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Figure 1: The workflow of SemanticOn. There are three steps to creating a web automation program with semantic conditions using
SemanticOn. (Step 1) To specify semantic conditions, users can either describe their intent in text (User Enters, c○) or indicate the section of
interest by brushing through an image a○ or highlighting parts of a text b○ (System Suggests). SemanticOn then encodes these specifications
with computer vision and natural language processing techniques into web program conditions. (Step 2) To create the intended web
automation program, users demonstrate the actions on the website using WebRobot, including image downloading d○ and text scraping e○.
(Step 3) Once the program is executed, users can also easily coordinate with SemanticOn to refine the semantic conditions ( f○, h○) or take
back control to add or remove data manually g○.

ABSTRACT
Data scientists, researchers, and clerks often create web automation
programs to perform repetitive yet essential tasks, such as data
scraping and data entry. However, existing web automation sys-
tems lack mechanisms for defining conditional behaviors where
the system can intelligently filter candidate content based on se-
mantic filters (e.g., extract texts based on key ideas or images based
on entity relationships). We introduce SemanticOn, a system that
enables users to specify, refine, and incorporate visual and textual
semantic conditions in web automation programs via two methods:
natural language description via prompts or information highlight-
ing. Users can coordinate with SemanticOn to refine the conditions
as the program continuously executes or reclaim manual control
to repair errors. In a user study, participants completed a series of
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conditional web automation tasks. They reported that SemanticOn
helped them effectively express and refine their semantic intent by
utilizing visual and textual conditions.

KEYWORDS
Web automation, PBD, user intent, semantics

ACM Reference Format:
Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman.
2022. SemanticOn: Specifying Content-Based Semantic Conditions for Web
Automation Programs. In The 35th Annual ACM Symposium on User Interface
Software and Technology (UIST ’22), October 29-November 2, 2022, Bend, OR,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3526113.
3545691

1 INTRODUCTION
Enterprises, governments, and schools often use web-based ap-
plications to manage their businesses and services. Other than
information consumption, users such as clerks, data scientists, and
researchers often employ these web platforms to conduct tasks that
are repetitive yet essential, such as data scraping and data entry.
Performing these tasks manually can often lead to human errors
(e.g., data duplicates, missed entries), which can cause inefficiencies.
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Web automation offers a solution that leverages bots to mimic hu-
man interactions on web applications. It assists users with tedious
and recurring tasks and has proven to be faster and more accurate
for various task types compared to manual effort [42].

Past research has developed techniques to help users of all ex-
pertise levels to quickly and accurately create their intended web
automation programs [25–27, 44, 68]. However, these techniques
are limited to creating programs with requirements at the website
syntax or structural level (e.g., scraping the first two items in each
row of a table). Tools capable of creating logic based on the mean-
ing of the content (semantics) remain unexplored. For instance,
commercial tools such as iMacros [2] and UiPath [8] enable users
to perform record-and-replay interactions for web automation and
testing. Research tools such as Helena [15] further this technique by
lowering the learning curve, allowing users with little programming
experience to create complex programs that can handle hierarchical
data (e.g., tree-structured data) and distributed data spread across
multiple websites.

We identified a need for web automation with semantic con-
ditions through prior user studies [24] and analysis of real user
requests in online forms [3, 7]. This includes vision-related seman-
tic conditions, such as scraping images that meet specific criteria
(e.g., a photography student wants to study group interaction por-
traits on a gallery website with thousands of photos) or text-related
semantic conditions, such as scraping text only when it expresses
particular sentiments (e.g., a film critic wants to evaluate positive
reviews of a movie star’s acting from dozens of news articles in
a journal). With current techniques, users cannot specify these
semantic intents in web automation programs. As noted above,
semantic information often varies by content type, which makes
it hard to design a universal interaction that is both easy to use
and sufficiently expressive. Additionally, unlike other AI systems
that provide results immediately after the provision of user inputs
(e.g., chatbots), once executed, a web automation program will
continuously output results as it iterates over web contents. This
makes monitoring and error handling difficult, as the program may
encounter unforeseen and problematic cases.

This paper explores interactive techniques to enable content-
based semantic condition specification for web automation pro-
grams. We introduce SemanticOn,1 a system that allows users to
specify, refine, and incorporate visual and textual semantic informa-
tion as conditions in web automation programs via two methods:
natural language description via prompts or detailed information
highlighting with system support. We define them as User Enters
and System Suggests, respectively. SemanticOn combines the rel-
ative strengths of neural models (Transformer) for unstructured
information and program synthesis techniques for web automation.
By doing so, we introduce a new interaction paradigm for users to
continuously add/refine semantic conditions in a programming-by-
demonstration system. Specifically, SemanticOn builds upon We-
bRobot [24], a program synthesis system that enables users to create
web automation programs by demonstrating actions on the target
websites. WebRobot employs a no-code development approach that
requires only web interactions in place of programming knowledge
from users, which is consistent with our design goal.

1SemanticOn is an acronym for semantic condition

Figure 1 depicts the three steps of using SemanticOn. (Step 1) To
specify semantic conditions, users can either describe their intent
in a sentence (Fig. 1.c), indicate their area of interest by brushing
through an image (Fig. 1.a), or highlight parts of a text (Fig. 1.b).
SemanticOn uses similarity-based computer vision and natural lan-
guage processing techniques to encode these specifications into
web program conditions. (Step 2) To create the intended web au-
tomation program, users will demonstrate actions on the website
using WebRobot, including image downloading (Fig. 1.d) and text
scraping (Fig. 1.e). (Step 3) Once the program is executed, users
can also easily coordinate with SemanticOn to refine the semantic
conditions based on the automatically detected information (Fig. 1.f,
Fig. 1.h) or reclaim control to manually add or remove data if the
program has misjudged (Fig. 1.g). To our knowledge, SemanticOn
is the first system to explore content-based semantic specification
interactions for web automation programs.

We conducted a user study with 10 participants to evaluate
SemanticOn’s overall usability and efficiency and to compare the
semantic condition specification of each method (User Enters and
System Suggests). We found that participants using SemanticOn
successfully extracted 80.8% of the required data with an average
time of 06:10 minute:second per task. The participants found that
SemanticOn helped them effectively express their semantic intent
by prompting them to consider their visual and textual perceptions
of the tasks. We found a sense of control vs. effort trade-off, where
participants enjoyed composing their conditions in User Enters but
had to spend more time and mental effort devising a description
to encapsulate the semantic condition. On the other hand, while
participants could specify and refine conditions more easily via
highlighting content details and selecting generated conditions in
System Suggests, they had less freedom to express their intent when
system suggestions were inaccurate.

In the final section of this work, we analyze the human-AI collab-
oration workflow in SemanticOn, discuss the implications of adding
similarity-based models in a symbolic PBD system, and explore
future work that can adapt our approach to other types of interac-
tive AI systems that require semantic conditions. This work is an
essential step towards the vision of natural, intent-unambiguous
end-user programming with a focus on web automation creation.
This paper makes the following contributions:

• The User Enters, System Suggests interaction designs, imple-
mentations, and evaluations that allow users to specify and
demonstrate their intent during web automation creation,

• The refinement and error-handling techniques to clarify and
improve semantic filters in a continuous human-AI collabo-
ration process,

• SemanticOn, along with a user study showing its usability
and effectiveness in helping users specify semantic condi-
tions for web automation programs.

2 RELATEDWORK
SemanticOn builds on decades of web automation systems and
innovations. In this section, we draw our design goals and guid-
ance from three areas of work: web automation, programming-by-
demonstration, and user intent specification and refinement.
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2.1 Web Automation
Web automation is a software technique that leverages bots to
perform tedious and recurring web tasks by mimicking human
interactions, such as data entry and data extraction. Data scientists,
UI testers, and clerks all use web automation to help complete
their domain-specific tasks [40, 43, 49, 69]. Social scientists, for
example, might want to develop web data scraping programs to
collect necessary web datasets. UI testers might want to create an
automated browser testing program to help developers find front-
end defects. Data workers might envision a data entry program
for routine tasks like entering large amounts of data into a digital
system (e.g., booking flights for all employees).

Creating web automation programs is a non-trivial and complex
task. Many web automation tools require users to have domain
knowledge (e.g., understand the Document Object Model (DOM)
structure) and programming experience. Commonly used tools like
Puppeteer [4], Selenium [6], Scrapy [5], and Beautiful Soup [1]
require users to learn code syntax, understand the task content
architecture (e.g., DOM tree hierarchy), and have software test-
ing experience. Prior work has shown that even for professional
developers, creating automation programs is time-consuming. Kros-
nick and Oney studied the challenges of writing web macros using
common web automation frameworks for experienced program-
mers [35]. They found that a primary challenge for participants
was the labor of checking syntactical element selectors to create
their programs, which was inefficient and prone to mistakes. In
addition, the program might not generalize to cross-webpage se-
lections where the elements don’t have syntactic similarity. Our
work enables users to specify the semantic meaning of their target
content, bypassing the issues caused by implementation.

Researchers have developed many helpful tools to reduce the
effort of program creation. For desktop application automation, sys-
tems like Sikuli [76] allow users to identify a GUI element (e.g., an
icon or a toolbar button) by taking its screenshot. Using computer vi-
sion techniques, it analyzes patterns in the screenshots to locate the
appropriate elements when automating GUI interactions. Although
this approach is promising, it requires programming knowledge
and cannot disambiguate similar elements or text information. For
UI testing, researchers have proposed and studied crowdsourcing
and automated testing strategies to help increase the testing cov-
erage and reduce the effort of creating programs [21, 23]. While
helpful, outputs produced with these tools are hard to generalize
to new UIs or contexts.

2.2 Programming-by-Demonstration
To further reduce the expertise required, many tools have used
a programming-by-demonstration (PBD) approach where users
only have to interact with the target applications rather than writ-
ing code [12, 36, 38]. These span a variety of application domains
including text manipulation [13, 39, 54, 60, 75], image or video edit-
ing [37, 47, 51], and GUI synthesis [55, 57, 61, 71]. In the context
of web applications, PBD delivers on this first design requirement,
offering web automation without requiring users to understand
browser internals or manually reverse-engineer target pages. The
PBD approach has produced great successes in the web automation

domain, most notably CoScripter [42], Vegemite [48], Rousillon [15],
and iMacros [2].

Some of these systems require users to edit their traces to add
parametrization. For instance, CoScripter and iMacros offer record-
and-replay functionality; users record themselves interacting with
the browser—clicking, entering text, and navigating between pages—
and the tool writes a loop-free script that replays the recorded
interaction. Because they lack support for control constructs and
function composition, these systems require users to have logic
skills. Other systems support iteration using program synthesis,
automatically discovering loops given a demonstration of one or
a few iterations. While less domain knowledge is needed, the syn-
thesizer can make mistakes in which the user must provide more
demonstrations or edit the DSL to correct it (e.g., Helena), which
can be frustrating. SemanticOn instead allows users to effectively
coordinate with PBD systems by smoothly switching agency and
editing constraints at any time during program execution.

2.3 User Intent Specification and Refinement
User intent specification is an important and challenging compo-
nent of human-AI collaboration. Ideally, users should be able to
easily and naturally specify their intent to a system while under-
standing its states. However, given the limited capabilities of AI
understanding techniques, high-level user intent can be difficult
for systems to comprehend. Many systems have proposed bridg-
ing the gap between user intent and system understanding. For
instance, PLOW [9] and PUMICE [46] allow users to express con-
cepts (e.g., hot weather) in natural language and then learn the
concepts to generalize the automation. Systems like Scout [70],
Designscape [64], and Iconate [80] allow users to iteratively refine
their intent by directly manipulating the AI-generated artifacts.
Other studies have shown that this refinement interaction can even
be delegated to crowd workers [18]. Another work, APPINITE [45],
also encapsulates user’s intent in natural language instructions
and clarifies the intention in a back-and-forth conversation with
the AI. While these approaches are promising, user intents can
involve visual and cognitive details such as identifying visual re-
lationships in images or parsing texts to match a high-level idea.
The user’s semantic level intents are often not fully or accurately
expressed through natural language or limited examples only, lead-
ing to information loss during communication and rendering the
communication ineffective [19].

Similar to PBD systems, programming-by-example (PBE) is an-
other approach to facilitate program creation for various tasks such
as data wrangling [29, 30, 34] and data visualization [52, 72]. Many
PBE and PBD systems require users to provide additional examples
to disambiguate user intent. Falx allows users to specify visualiza-
tion examples using a small amount of data and then infers and
transforms the data to match the design [73]. Sporq allows users
to more accurately and quickly search code patterns in large code-
bases by prompting them to refine their intent by annotating a
batch of negative examples and adding specific constraints [58].
Other works enable users to directly annotate their input examples
(augmented examples) to disambiguate user intent [66, 78]. Or they
employ data visualization techniques to showcase the generated



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Kevin Pu, et al.

programs, allowing users to tweak the path of program genera-
tion in a tree view [77]. While promising, providing additional
examples increases users’ cognitive demand. In this work, we focus
on addressing the ambiguous semantic conditions and designing
human-AI collaboration interaction solutions to help refine the
constraints based on the content.

Using machine learning (ML) models to refine intent has been a
recent focus in the field of interactive ML. One common interactive
ML approach allows users to offer feedback during the model train-
ing process for more effective ML model creation [16]. Work by Cai
et al. allows users to adjust the search algorithm iteratively with
different types of similarities at different moments [14]. Projects
by Austin et al. and Jiang et al. allow users to interact with large
language models to help refine their intent when writing code
snippets [11, 33]. Work by Amershi et al. allows users to identify
new friend groups on social media by analyzing the examples pre-
sented [10]. Software developed by Fogarty et al. helps users to
create their own rules to improve the search results [28]. This re-
search inspires our work, but instead, we focus on helping users
refine their intent while interacting with continuous AI systems—
web automation programs that require constant monitoring and
that effectively coordinate the turn-taking.

3 BACKGROUND AND DESIGN GOALS
Our work is built upon an existing web automation system, We-
bRobot [24], that only uses web interactions and requires no pro-
gramming knowledge from its users. This is consistent with our
design goal. In addition to prior work, we derive our design goals
from WebRobot’s user study. In this section, we provide necessary
background information on the WebRobot system and then discuss
the design goals for our system SemanticOn.

a

b

c

d

Figure 2: A screenshot of the WebRobot system UI.

3.1 The WebRobot SystemWorkflow
WebRobot is designed to facilitate web automation program cre-
ation. Figure 2 shows the WebRobot user interface. To create a
web automation program for a data entry or scraping task, a user

first starts recording their actions (Fig. 2.a). Then they can either
upload a JSON file (Fig. 2.b) if the task involves data entry, or they
can choose an appropriate action (e.g., Scrape Text) in the action
panel (Fig. 2.c) and perform the required actions (e.g., clicking the
desired text data on the website). After each scraping action, they
will see the data appended to the output panel (Fig. 2.d). Behind
the scenes, WebRobot records every user action on the website and
its associated action type (e.g., Scrape Text). After a few demon-
strations, WebRobot synthesizes a program 𝑃 from the trace 𝐴 of
demonstrated actions. In particular, WebRobot guarantees that 𝑃
not only reproduces the demonstrated actions from 𝐴 but also gen-
eralizes beyond𝐴. This typically implies 𝑃 would contain loops that
can be used to automate the user-intended task. Finally, WebRobot
executes 𝑃 to automate the rest of the actions in the task.

procedure Synthesize (𝐴)
input: 𝐴 = [𝑎1, ··, 𝑎𝑚] is a trace of user-demonstrated actions.
output: a program 𝑃 that generalizes 𝐴.
1: 𝑃0 := 𝑎1; ··;𝑎𝑚 ;
2: 𝑊 := {𝑃0}; 𝑃 := ∅;
3: while𝑊 ≠ ∅
4: 𝑃 :=𝑊 .remove();
5: if 𝑃 generalizes 𝐴 then 𝑃 .add(𝑃);
6: 𝑊 ′ := Rewrite(𝑃);
7: 𝑊 :=𝑊 ∪𝑊 ′;
8: return Rank(𝑃);

Algorithm 1: Rewrite-based program synthesis algorithm.

3.2 WebRobot’s Synthesis Algorithm
In a nutshell, WebRobot’s synthesis algorithm (Algorithm 1) gen-
eralizes an input action trace 𝐴 into a program 𝑃 (with loops) by
iteratively rewriting 𝐴 to loops in 𝑃 from the inside out. Initially, it
creates a program 𝑃0 with exactly those actions in 𝐴 (line 1): while
𝑃0 reproduces 𝐴, it does not generalize 𝐴 (i.e., it does not produce
new actions after 𝐴). Therefore, the algorithm performs iterative
rewriting to gradually “compress” 𝑃0 into more compact and gen-
eral programs using a worklist algorithm (lines 2-8). The worklist
𝑊 is initialized to have only 𝑃0, and we use 𝑃 to keep track of all
programs that generalize𝐴 (line 2). Whenever𝑊 is not empty (line
3), the algorithm would remove a program 𝑃 from𝑊 (line 4). It then
checks to see whether 𝑃 generalizes 𝐴; if so, 𝑃 is added to 𝑃 (line
5). After this, in line 6, the algorithm tries to rewrite 𝑃 into more
general programs, which are stored in𝑊 ′. The key idea underlying
our Rewrite procedure is to perform semantic rewriting using a
methodology called speculate-and-rewrite. Intuitively, it inspects 𝑃 ,
identifies repetitive patterns in 𝑃 , hypothesizes potential loops that
correspond to 𝑃 , and finally synthesizes programs with one more
level of loop. How WebRobot’s speculative writing process works
is beyond the scope of this work; we refer interested readers to the
original WebRobot paper [24] for details. Once 𝑃 is rewritten to a
new set of programs𝑊 ′ (line 6), the algorithm simply merges𝑊 ′

into𝑊 (line 7). The worklist loop terminates when no programs



SemanticOn: Specifying Content-Based Semantic Conditions for Web Automation Programs UIST ’22, October 29-November 2, 2022, Bend, OR, USA

can be rewritten and it finally returns the smallest program in 𝑃

using a ranking function (line 8).

3.3 User Feedback
In WebRobot’s user study, participants reported that while We-
bRobot can help lower barriers of entry for the creation of web
automation programs and handling a more comprehensive range
of tasks, they wished that they could express conditions to filter the
content. For instance, one participant said, “maybe some conditional
scraping [can be included], not based on whether the element exists
in the webpage, but based on some other conditions.” Consistently,
we found posts on forums such as iMacros [3] and Stack Over-
flow [7] that request the creation of web automation programs with
content-based conditions. Participants also wished to refine their
intent when interacting with the WebRobot system. For instance,
participants reported that they wanted to “undo my wrong manipu-
lations” or “edit my history.” However, as noted in the related work,
WebRobot and other systems do not effectively support actions
such as undo or history manipulation.

3.4 Design Goals
Based on this prior work, we devised the following three design
goals to help users easily create web automation programs with
semantic conditions.

• DG1: Ability to express content-based semantic condi-
tions: Users can specify semantic conditions when creating
web automation programs.

• DG2: Accessible user intent refinement: Users can iter-
atively refine their semantic conditions at any time of the
program creation process.

• DG3: Responsive error handling for mistakes made by
users and the system: Users need to modify inaccurate
conditions and edit scraped data easily.

WebRobotML models

1. Specify conditions 2. Demonstrate

3. Intent refinement

Final web automation 
program

Synthesized programSemantic filters

Figure 3: SemanticOn’s system architecture.

4 SEMANTICON
With the three design goals above, we created SemanticOn to help
users specify, refine, and incorporate semantic conditions in au-
tomated web data scraping. Figure 3 shows SemanticOn’s system

architecture and main user interactions at a high level. Instead of
writing web macros from scratch for each website and filtering the
scraped content in post-processing, users can interact with Seman-
ticOn to compose semantic conditions on the content they want
to scrape (Step 1 Fig. 3), then demonstrate actions on the target
website to synthesize automation programs for different websites
without writing a single line of code (Step 2 Fig. 3). Throughout this
process, users can communicate with SemanticOn, which is capable
of parsing text and image content throughmachine learning models.
The users and SemanticOn work together to refine the condition
set and repair errors in result selection, continuously improving
both the system’s and user’s understanding of the filter criteria
(Step 3 in Fig. 3). In this section, we first illustrate SemanticOn’s
user experience with a sample scenario that embodies common
semantic conditions. We then detail the design and implementation
of SemanticOn.

4.1 The SemanticOn User Experience
Mia, an outdoor enthusiast, wants to extract online information
about travel destinations where outdoor activities are available. To
help her make an informed decision, Mia wants to scrape the text
description and the image for each location from an article to build
potential itineraries. One option is to read through every paragraph,
look at each picture, and manually copy and paste the relevant in-
formation, but that process would be tedious and repetitive. On the
other hand, Mia could write a web scraping script using Python. She
has some coding experience, but writing a script and filtering the
results based on her preference would also be time-consuming and
laborious. Instead, Mia uses SemanticOn to efficiently demonstrate
her conditions and web actions and synthesize a web automation
program that completes the task for her.

To begin, Mia sets the semantic conditions for the intended
content (Step 1 Fig.3). She first clicks “Text Condition”. She then
selects User Enters (Fig. 4.d) to specify the semantic condition in her
ownwords. Mia represents her high-level requirement in the system
prompt by typing, “This is a great location for outdoor activities”
(Fig. 6.c). She believes this sentence is likely semantically similar
to the relevant content in this article. After clicking “Add”, the
condition is appended to the text condition table (Fig. 4.h) in the
condition panel. Furthermore, Mia decides to add a condition to
the corresponding destination image. She wants to travel to a place
where hiking and water activities are accessible. To that end, she
uses System Suggests, clicks on an ideal image, and highlights the
mountain and lake in the picture (Fig. 6.a). The system detects
several objects and summarizes the image content into a sentence.
Mia also adds the relevant objects and caption to the corresponding
tables (Fig. 4.f,g) in the condition panel.

After specifying two initial conditions, Mia decides to start the
demonstration process (Step 2, Fig.3). She clicks the “Start Record-
ing” button (Fig. 4.a) to start the web macro recording for program
synthesis. Then, Mia specifies the task name as “Travel Destination
Search” and sets the column number to 2, one for text descriptions
and one for the associated images.

Next, Mia selects “Download Image” and hovers the mouse to
highlight the desired image element (Fig. 4.j). As she clicks on the
element, the image is downloaded and put into the first column
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Figure 4: Overview of SemanticOn’s user interface. The user begins program synthesis by clicking Start Recording a○. The user can
disable or enable system suggested prompts in automation b○. The user can specify conditions for images or text c○ and choose between
manually input or select system-suggested conditions d○. The user can also toggle between OR and AND logic for the condition set e○.
A unique table displays image object conditions f○, image description conditions g○, and text description conditions h○. The user may
pause i○ at any time to make changes that will not affect automation. To interact with the web page and demonstrate actions for program
synthesis, the user will select their action type by choosing an option in the action panel j○. The system will predict the next action, shown
in the temporary row k○. If the semantic conditions are met, the temporary row will be appended to the output panel l○. To learn more
about how the content match with the conditions, the user may click on the information icon m○.

of the Temporary Row (Fig. 4.k). SemanticOn evaluates conditions
associated with each column before the row is added to the output
panel or skipped. However, at the demonstration stage, the condi-
tion will not be triggered, as we assume users will only demonstrate
macro actions on the content they want to include. Mia then selects
the “Scrape Text” action and repeats the steps for the destination
description. As both columns in the temporary row are filled, the
entire row is added to the output panel (Fig. 4.l).

Figure 5: Example of system prompt when new content does
not match with current condition.

Mia repeats her demonstration for a second destination that fits
her requirement. After two rows of user demonstration, WebRobot
can synthesize the web automation program and predict the user’s
next step, so the system now enters a guided semi-automation

mode. SemanticOn scrolls into the next row of the destination and
highlights the next element to be extracted. For the image, a prompt
states that the generated caption matched with the initial image
condition “a lake beneath the mountain range”. Mia confirms this
selection and lets SemanticOn continue. However, Mia finds that
her initial text condition is too general, as the system informs her
the text condition does not match the current text and presents
key phrases from this element to be potentially used as refinement
(Fig.5). She realizes that “scenic hiking trails” would be a good
textual condition to include. She also discovers “pet travel” as a key
phrase. Mia would love to take her dog Sushi on the trip, so she also
selects that key phrase. After she clicks “Finish,” those two phrases
are added to the text condition table, and the highlighted text is
considered accepted.

After inspecting several elements in semi-automation mode and
refining the condition set with system prompts, Mia feels satisfied
with the system’s interpretation of her requirements. She clicks on
the “Hide Prompt” button (Fig. 4.b) to allow the system to automat-
ically predict and filter the rest of the web page content without
stopping for user confirmation. Mia sits back and waits for the
program to finish. However, she notices that for one destination,
“Grand Canyon, USA,” the system filters the image as it does not
match “a lake beneath the mountain range”. However, she actually
wants to include this destination in her list, as she can still engage in
outdoor activities such as hiking and kayaking. To repair this error,
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Both image and text
Detailed highlight on 
both content
Show two windows of 
system results

Only image
User Enter Popup
Summarize content

a

b

c

System Suggests 
for image

System Suggests 
for text

User Enters for 
image and text

Figure 6: Two condition specification methods in SemanticOn. After entering the system suggests mode, the user may draw on images.
Then, a prompt a○ containing detected objects within that region, and a general description of the image will be shown. Similarly, the user
may highlight sections of text, and the system will prompt b○ important key phrases within the highlighted portion. Users may manually
enter conditions by clicking on an image or section of text and entering their conditions c○.

Mia pauses the automation process (Fig. 4.i, 7.b). She then manually
scrapes the text description and downloads the image using the
action panel (Fig. 4.j). It’s worth noting that during the pause, Mia’s
web macros are not used for program synthesis and therefore do
not affect the current automation program. Mia also adds another
image condition using User Enters, specifying “a canyon valley with
river” as another instance of her ideal destination. While the pro-
gram is paused, Mia scrolls through, evaluates the output panel,
and can delete output rows that were added by system mistake or
modify/delete conditions during the pause (Fig. 7.d). After she is
satisfied with the refined condition set and the current results, Mia
clicks “Resume” to continue the automation. The program iterates
through the rest of the web page and collects filtered data based on
Mia’s semantic conditions. After the program ends, Mia stops the
web macro recording, and the collected results are exported as a
JSON file. Mia uses SemanticOn to create a tailored web automation
programwithout writing any code. She also obtains a high-accuracy
result set of her ideal travel destinations by continuously working
with SemanticOn to clarify and refine conditions and repair errors.

4.2 Design and Implementation
We implemented SemanticOn as a Chrome browser extension, in-
corporating the core program synthesis engine from an existing sys-
tem, WebRobot. Primarily, it uses plain JavaScript for the front-end
interactions. For semantic condition comprehension, we adopted
two off-the-shelf Transformer models.

4.2.1 Step 1: Specify Semantic Conditions. To enable content-based
semantic conditions specification (DG1), SemanticOn allows users
to add condition criteria to specific content on the target website.
Currently, the system supports conditions on text and image content
(Fig. 4.c). The user can choose one of the two methods of specifica-
tion: 1) User Enters, where the user composes the condition using
natural language, or 2) System Suggests, a novel specification tech-
nique where the user highlights relevant content for SemanticOn to

analyze and provide suggested conditions (Fig. 4.d). Upon selecting
the type of condition and the specification method, the user chooses
an element on the web page as the basis of the semantic condition.

Inspired by recent prompt-based interactions [33, 50, 79], a prompt
displays next to the selected text or image element for User Enters,
encouraging the user to enter a semantic description of their search
criteria (Fig. 6.c). This description, along with the context of the text
or image element, is added to the conditional panel on SemanticOn
(Fig. 4.f,g,h). In comparison, for System Suggests, the user needs to
highlight the crucial part of the content to set the condition on.

For images, the user brushes over an area of interest with their
mouse (Fig. 6.a) to illustrate. The image is fed through an off-the-
shelf pre-trained multi-layer Transformer model that learns to
align image-level tags with their corresponding image region fea-
tures [32]. The model detects objects for the illustrated section
and generates a caption for the entire image. For texts, the user
highlights relevant phrases or sentences with their mouse (Fig. 6.b).
Similarly, the text is processed by an off-the-shelf unsupervised
language model where the noun phrases in the input text are first
detected and then ranked based on frequency and co-occurrence.
The model generates key phrases in the passage highlighted by the
user. The user can then pick any object, caption, or phrase tags
to add to the condition table (Fig. 4.f,g,h). We used these models
through the Microsoft Azure Cognitive Services and Cloud plat-
form.2 Guided by the design of other systems [17, 31], we also
implemented edit, delete, and logical operations for multiple con-
dition specifications, allowing the user to modify, remove, or set
the AND/OR logic switch on the conditions (Fig. 4.e). They can also
apply the condition to one or all of the output columns.

4.2.2 Step 2: Demonstrate Actions and Automate. Once the user
sets initial conditions, they can start the demonstration process by
clicking “Start Recording” (Fig. 4.a). This initializes the WebRobot

2Microsoft Azure, https://tinyurl.com/55puwcf2

https://tinyurl.com/55puwcf2
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Figure 7: SemanticOn Error Repair Workflow. A user wants to download cute pictures of a cat and a dog cuddling, but they notice a
photo of two cats is being scraped by mistake a○. The user pauses the system b○. Then, the user can edit the condition description, delete
conditions c○, and delete the incorrectly scraped result d○.

system on the current web page. The user can then select one of
the three actions under the action panel: Scrape Text, Download
Image, and Normal (Fig. 4.j). The Scrape Text and Download Image
actions allow users to click on the desired text or image element and
extract the information into the table in output panel. In contrast,
the Normal action allows the user to navigate and paginate the web
page. For example, the user can use Normal to click into a web page,
use Scrape Text to extract a passage, and switch back to Normal to
return to the previous page.WebRobot registers this entire sequence
of web macros and generates an automation program to repeat it.

After the user demonstrates their intended pattern of actions
twice, WebRobot generates an automation program and predicts
the next action. SemanticOn also enters a guided semi-automation
mode. That is, for every data extraction action predicted, the system
parses the content through machine learning models. A new image
is considered matching with the current conditions if 1) an object
specified in the image condition is detected (e.g. user specified a
dog, and the new image consists of a human petting a dog), or 2)
the new caption yields a similarity score above a certain threshold
when compared with captions specified in the image condition. The
image caption and text content similarity thresholds were set to 0.5
and 0.4, respectively, based on our benchmark testing. A new text is
considered matching if it yields a similarity score above a threshold
when compared with specified text conditions. We used a Sentence-
Transformer to calculate the semantic similarity between captions
and texts [67]. The model utilizes Sentence-BERT (SBERT), a pre-
trained network that derives semantically meaningful sentence
embeddings that can be compared using cosine-similarity. To avoid
the low-score comparison between an entire paragraph and a key
phrase, we chunk the text content and conditions into sentences
and see if any pair results in a high similarity score.

4.2.3 Step 3: Refine, Repair, and Coordinate. To help users easily
refine their intent (DG2) and repair mistakes (DG3), we adopted
the human-in-the-loop approach [24, 59, 63] and introduced a semi-
automation mode to ease the transition between manual demon-
stration and full system automation. First, to repair unexpected
results or conditions, SemanticOn offers users a program pause
function, which is important and unique in continuous AI systems.
In the semi-automation mode, if new text or image content matches

with the condition set, the user is notified by a prompt informing
them which part of the content was matched. In contrast, if the new
content is ambiguous or does not match with the condition set, the
user is prompted with a set of suggested conditions (objects and
captions for images, key phrases for text) generated by ML model
processing (Fig. 5). The user can clarify their intent by selecting
suggested conditions to append to the condition set. The new con-
tent will be accepted and added to the output results. Alternatively,
the user can reject the system’s prediction by clicking “Finish”,
in which case the condition set remains unchanged, and the new
content is discarded. The semi-automation mode guides the user
through condition specification and refinement. The user might
begin with a high-level idea of their search query but can refine
and adjust it upon seeing SemanticOn’s interpretation of the result.
The user can add new conditions to cover unforeseen cases or to
modify/delete vague or over-specified conditions that filter results
in an unintended way.

After going through predicted content, administering decisions,
and refining conditions, the user might feel satisfied with the set of
conditions. In that case, the user can choose to hide system prompts
(Fig. 4.b) for rejected content and enter full automation. In this mode,
SemanticOn continuously executes the predicted web macros and
assesses each new piece of content, outputting the information
accordingly. This is done by adding a condition evaluation step
after executing every macro before extracting the data. However,
when the user detects a filtering error, they can use the “Pause
Automation” button to reclaim manual control (Fig. 7.b). When the
system is paused, the user is free to modify the output result table.
For each assessed piece of output, an information icon is displayed
at the end of the table cell (Fig. 4.m). Once clicked, it will expand
and display the ML processing results for that content. The user can
repair system-made errors by deleting rows of ambiguous results
accepted by the system but misaligned with the user’s mental model
(Fig. 7.d). They can alsomanually use the action panel to add content
rejected by the system but matches the user’s needs. In addition,
the user can learn from the filtering results to add new conditions
they omitted or under-specified. Likewise, condition editing and
deletion are also available during the pause (Fig. 7.c). This way,
the user can feel confident about the automatic selection of results,
as they always have the power to reclaim manual control, repair
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system mistakes, and clarify their intents. Note that during pause,
none of these steps are recorded for program synthesis and do not
affect the automation program.

5 SYSTEM EVALUATION
We conducted an in-person user study to evaluate SemanticOn’s
usability and compare the two methods for condition specifications.
This evaluation was guided by the usage evaluation in the HCI
toolkit evaluation strategy classification [41].

5.1 Participants
We recruited 10 people (5F5M, mean age 24.3, mean coding experi-
ence 4.6 years) at a large public university. Participants are denoted
as P1-P10 in subsequent sections. Seven of the participants were
graduate students, and three were undergraduates. Five partici-
pants have written web automation programs or used commercial
tools to some extent. The participants were contacted by email to
participate in a study where they would interact with computer
software to create web automation programs.

5.2 Study Design
After signing our consent form, each participant first watched a
tutorial video of SemanticOn’s interface and features. Then par-
ticipants performed five tasks using SemanticOn. For each task,
they were given a task sheet with a semantic conditional intent.
Similar to the posted tasks in online forums, the descriptions were
intentionally vague, so the user could not copy the instructions
verbatim and would need to formalize their own idea of how to
specify and refine the conditions. The participants could request the
experimenter’s assistance at any time during the session. After the
participants completed the tasks, we conducted a short interview
with them regarding their experience. Additionally, they filled out
a short survey with Likert scale and short-answer questions when
they exited. The participants were compensated $25 for their time.
Each session took 60-75 minutes and was conducted in person on
our machine. All sessions were screen- and audio-recorded. Our
study is approved by the IRB at our institution.

5.3 Tasks
Through an analysis of online web scraping request posts from
iMacros Forum [3], and Stack Overflow [7], we designed five tasks
that represent the challenge of creating web automation programs
with semantic conditions. The Appendix (Fig 8) shows the details
of the user study tasks. To evaluate the usability and utility of the
system and compare the effectiveness of two intent specification
methods, we designed the tasks with the following goals in mind:
1) the web content to be scraped should be realistic and easily
understood by participants, 2) the tasks should extract informa-
tion based on text and image content, 3) the condition criteria and
the corresponding results should contain some ambiguity to allow
room for refinement, and 4) the tasks should help SemanticOn to
demonstrate the system’s full capabilities. To achieve this goal, we
adopted and piloted five web scraping requests by real users on

online forums, two based on image-heavy websites (pet wallpa-
pers3, street photography4), two with text-heavy content (movie
star biographies5, list of novels6), and one task with a variety of
both image and text content (beautiful places in the world7). Par-
ticipants needed to extract only images or only text content for
the first four tasks. In addition, they were randomly assigned to
use User Enters and System Suggests as their specification method
for the first four tasks. We counterbalanced the ordering of image
versus text tasks and the assigned specification method to eliminate
sequence and learning effects. To standardize task difficulty, par-
ticipants needed to extract the top 15 text passages and/or images
from the website based on a semantic condition. For the final task,
participants needed to scrape both images and text in two separate
columns and were free to use both condition specification methods.
Task 5 served as an exploration task for participants to evaluate and
compare the two specification methods and was not constrained by
a result set or time. Participants engaged in this task until the end
of the study. Therefore, Task 5 was not included in the quantitative
analysis for accuracy and duration in the later sections.

We designed the conditions based on the content itself and es-
tablished a ground truth result set that was compared with the
participant’s result to measure accuracy. The conditions were de-
signed so that in the ground truth set, the number of results passing
and failing the condition across all tasks was approximately the
same (31 passes, 29 fails).

5.4 Results
5.4.1 Time and accuracy. The user study recorded 40 scenarios (10
participants x 4 tasks); one instance was discarded from analysis due
to a recording issue, resulting in 39 total task completions. Table 1
lists the average time (in minute:second) each participant spent and
the accuracy (percentage of correctly included and excluded results)
on each task. The overall average duration is 06:10 (image tasks
𝑚𝑒𝑎𝑛=05:55, text tasks𝑚𝑒𝑎𝑛=06:25), and the overall average task
accuracy is 80.7% (image tasks𝑚𝑒𝑎𝑛 = 83.0%, text tasks𝑚𝑒𝑎𝑛 =

78.5%).We could not identify statistical significance in the difference
in accuracy and duration across image and text tasks.

We also analyzed the data comparing usages of User Enters ver-
sus System Suggests. The average duration was 06:22 for User Enters
tasks and 05:57 for System Suggests tasks. In terms of mean accu-
racy, participants achieved 83.0% for User Enters tasks and 78.5%
for System Suggests tasks. Again, the differences are unable to be
identified as statistically significant.

5.4.2 Overall effectiveness in intent specification. In the exit survey,
participants rated the ease of use of SemanticOn overall, the ease
of use of each specification method, their mental effort, and their
trust in the system. Table 2 displays the average score for Likert
scale questions on SemanticOn’s usability. On a scale of 1 (strongly
disagree, very negative) to 7 (strongly agree, very positive), partici-
pants believed their specified conditions were displayed in an easily

3Pet Wallpapers, https://tinyurl.com/47kr3mz6
4Street Photographers, https://tinyurl.com/bdppfa48
5Movie Stars, https://tinyurl.com/zsnkne5r
6Best Romance Novels, https://tinyurl.com/mryjs47h
7Vacation Destinations, https://tinyurl.com/4peucx3p

https://tinyurl.com/47kr3mz6
https://tinyurl.com/bdppfa48
https://tinyurl.com/zsnkne5r
https://tinyurl.com/mryjs47h
https://tinyurl.com/4peucx3p
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Task index Completion time
(mean, SD in mm:ss) Accuracy

1 05:06 (01:43) 85.3%
2 06:58 (02:28) 68.9%
3 06:44 (01:50) 81.3%
4 05:56 (01:50) 86.0%

Table 1: Average time spent on each task. Tasks 1 and 3 are
image tasks; tasks 2 and 4 are text tasks.

understandable way (𝑚𝑒𝑎𝑛 = 6.0, 𝑆𝐷 = 1.1) and that the system-
generated prompts in semi-automation mode helped them refine
their intent (𝑚𝑒𝑎𝑛 = 5.6, 𝑆𝐷 = 0.97). However, participants had
polarized opinions on the statement “it was easy to coordinate (claim
controls, pause/resume, show/hide prompts) with SemanticOn to re-
pair under- or over-specifications,” with 5 participants agreeing and
3 participants disagreeing (𝑚𝑒𝑎𝑛 = 4.7, 𝑆𝐷 = 1.7). Overall, the users
widely accepted the semi-automation workflow towards automa-
tion and the opportunity to adjust conditions later on by pausing.
9 out of 10 participants added refinement conditions for Tasks 1-4,
and all participants utilized the system prompts in semi-automation
mode to refine their conditions in Task 5.

5.4.3 Error-handling Analysis. As per DG3, SemanticOn offers
error-handling techniques for users during full automation. We
measured participants’ usage of three error repair methods: con-
dition deletion, result deletion, and manual result addition. Most
users opted to use the pause and repair functionalities, as 7 par-
ticipants deleted their specified conditions due to inaccuracies, 6
participants removed undesired output to repair system mistakes,
and 2 participants manually added desired contents missed by the
filter. The utilization of the error-handling features varied based on
the task type. For condition deletion, we found 16 instances across
image tasks and 0 instances for text tasks. Similarly, there were 11
instances of result deletion for image tasks and 2 for text tasks. As
for manual result addition, we found 3 instances for image tasks
and none for text tasks. This difference can be related to the content
processing speeds for visual versus textual materials. The condition
specification method also plays a role in the usage of error-handling
features. We observed 4 instances of condition deletions for User
Enters and 12 for System Suggests. In addition, we found 4 result
deletion instances for User Enters and 9 for System Suggests. This
can be attributed to the difference in the required effort for each
workflow. We expand on these varieties in our Discussion.

5.4.4 Comparison between User Enters and System Suggests. Re-
garding the difference between the two specification methods, par-
ticipants found both experiences comparable but thought System
Suggest was easier to use. P10 said, “[My preference] really depends
on the task, but I really liked the System Suggests mode, especially
for words it was really easy to use and accurate.” When assessing
the overall experience to specify conditions, participants rated User
Enters slightly higher (𝑚𝑒𝑎𝑛 = 5.3, 𝑆𝐷 = 1.1) than System Suggests
(𝑚𝑒𝑎𝑛 = 5.1, 𝑆𝐷 = 1.2). But when evaluating the ease of use for each
interaction, users rated entering their own natural language descrip-
tions lower (𝑚𝑒𝑎𝑛 = 5.1, 𝑆𝐷 = 1.1) than brushing, highlighting, or
choosing system-suggested conditions (𝑚𝑒𝑎𝑛 = 5.7, 𝑆𝐷 = 0.82). We

were unable to identify statistical significance in these differences.
However, when measuring the average number of initial conditions
set before the demonstration, participants specified an average of
2.6 conditions for User Enters and 4.1 conditions for System Suggests
(𝑝 < 0.05). This points to a difference in ease-of-use and condition-
generation capability between the two methods, which is further
explored in Discussion.

Question Likert Scale (Mean, SD)

User Enters Experience 5.3 (1.0)
System Suggests Experience 5.1 (1.2)
User Enters Ease of Use 5.1 (1.0)
System Suggests Ease of Use 5.7 (0.8)
Coordination to Refine Specifications 4.7 (1.6)
Usefulness of Generated Prompts 5.6 (0.9)
Conditions Displayed Clearly 6.0 (1.0)
Trust in Full Automation 4.5 (1.5)
Success in Completing Task 5.0 (0.9)

Mental Demand 4.6 (1.7)
Effort to Achieve Results 4.9 (1.3)
Feelings of Insecurity and Stress 5.2 (1.7)
Feelings of Being Hurried or Rushed 4.9 (1.6)

Table 2: Survey Responses. For section one (top), 1 is very nega-
tive, and 7 is very positive. For section two (bottom), 1 is very high
mental demand, effort, insecurity and stress, and feelings of being
hurried and rushed.

5.4.5 Mental effort and AI system trust. Participants also reported
on their mental effort in completing the tasks and their trust in the
AI system in the survey. Participants generally reported medium
to high mental effort using SemanticOn, especially at the start
of the study when they had to familiarize themselves with the
interface and remember the workflow (P2, P5, P6, P7). On a scale of
1 (very demanding, very hard, not successful) to 7 (not demanding,
not hard at all, very successful), participants experienced medium
mental demand (𝑚𝑒𝑎𝑛 = 4.6, 𝑆𝐷 = 1.8) and medium effort (𝑚𝑒𝑎𝑛 =

4.9, 𝑆𝐷 = 1.4). They believed they were relatively successful in
accomplishing the tasks (𝑚𝑒𝑎𝑛 = 5.0, 𝑆𝐷 = 0.94).

We also found that the participants exhibited a medium level
of trust (𝑚𝑒𝑎𝑛 = 4.5, 𝑆𝐷 = 1.6) towards the AI system’s prediction
in full automation. Six users were comfortable entering full au-
tomation mode for at least one task. However, P3 and P7 expressed
very low trust in the automated prediction (both rated 2 out of 7 in
survey). During the interview, some participants (P5, P9) also com-
mented that their trust in the system depended on the content type
and the number of refinements required for each task. For example,
P5 mentioned they “trust this picture task a bit more...[because] text
has more group[ing]s and potential variations” when they used 11
text refinements and only 1 image refinement. We analyze the effect
of content type on users’ perception of the task and our system in
the Discussion.
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6 DISCUSSION
Based on the evaluation, we present analysis of the human-AI col-
laboration techniques and the role of each agent in SemanticOn. We
also discuss the implications of adding similarity-based machine
learning models in symbolic PBD systems. In addition, we report
findings on users’ trade-offs in using User Enters and System Sug-
gests, as well as the intent specification effectiveness and system
limitations to provide insights on future designs.

6.1 Human-AI Collaboration
The user workflow of SemanticOn consists of both a human and an
artificial intelligence agent; they exchange control in different parts
of the interaction and collaborate to build a complete and accurate
web automation program. In SemanticOn, we utilize machine learn-
ing models’ classification efficiency to rapidly process texts and
images, summarize the content, and provide suggested semantic
filters to the user. This saves the user’s mental effort significantly,
as it is no longer the human’s role to parse content and identify an
inclusion or exclusion decision. However, it also introduces a new
source of error to web automation, as similarity-based models can
mislabel inputs and result in false positive and false negative data.
This is why human is always involved in the continuous human-AI
collaboration in SemanticOn. After a couple of demonstrations,
the user is prompted with potential semantic conditions for each
processed content in the semi-automation mode. Additionally, even
when the user feels satisfied with the set of conditions, the program
can still be paused at any time if a mistake is spotted or the user
wants to edit the conditions.

From the evaluation of this interaction paradigm, most partici-
pants (7/10) reported that the workflow’s path from demonstration
to guided semi-automation to full automation was intuitive and
useful. The semi-automation phase allowed users to calibrate con-
ditions with SemanticOn and better understand the AI system’s
interpretation of the conditions. This is important as users might
not have had a well-defined semantic condition at the program’s
start. P4 believed that the “human brain still needs to think about
[how to describe the condition]...and link to all the keywords. These
words might not specifically come to mind to the human.” In this case,
the initial conditions may not include all of the user’s needs, result-
ing in low filter accuracy. The semi-automation mode provides aid
for this. For example, P3 mentioned that even if the results were
not accurate at the start, “I can interactively try to make [automated
prediction] better as it goes.” P4 also mentioned that “the transitional
period to trust the process is good, saves a lot of fuss.”

However, the steps to refine conditions and results through sys-
tem prompts and automation pauses could require too much user
effort and become time-consuming. P5 commented that the entire
user experience was “a little slow...I think the fine-tuning part is
slow. Once you start [full automation], then it’s fine.” P2 reported
that “it took me multiple times to figure out the sequence of the but-
tons.” When they spotted system mistakes, P1 and P4 decided not
to pause and amend the errors because it took too much effort.
They believed the misclassified content was not detrimental to
the automation task, as there was no requirement for accuracy.
While supplying users with multiple refinement tools enhances

robustness, the system must be cautious not to overload users with
interaction techniques and interruptions.

6.2 Similarity-based Model in PBD Systems
Amain contribution of SemanticOn is introducing a new interaction
paradigm for users to continuously add/refine semantic conditions
in programming-by-demonstration (PBD) systems. In particular, it
enables users to express intent via similarity-based machine learn-
ing models. This specification is at a higher abstraction level than
pure symbolic systems based on DOM structure. Here, we dis-
cuss the advantages and disadvantages of expressing intent using
similarity-based statistical models versus pure symbolic systems,
the implications of adding statistical models in PBD systems, and
the generalizability and viability of SemanticOn against errors.

Traditional symbolic automation systems like WebRobot are ro-
bust at understanding specific user actions and generalizing them
into repeatable steps in a synthesized program. This is achieved
by iterating over the elements in the DOM structure of the web-
sites and generalizing the pattern. Meanwhile, statistical machine
learning models are useful at parsing high-level user intent and
matching unstructured, but semantically similar concepts, for exam-
ple extracting key entities from a natural language input. However,
both systems alone have their limitations. Similarity-based models
lack reasoning capability. The machine learning models we employ
classify the inclusion and exclusion of content based on semantic
similarity, but they cannot derive further actions based on spe-
cific criteria. For example, the models alone could not construct a
program that repeatedly takes in an image URL, searches it, and
downloads the image based on semantic conditions. It is efficient in
the last filtering step but ineffective when structural elements need
to be generalized. In contrast, symbolic models that reason about a
set of user instructions over a certain website structure might fail
to generalize if the query is unstructured or outside the scope of
the task domain, while similarity models can cover a wider range of
input content that are not constrained by the structure. SemanticOn
combines these two techniques in an effective way that seals the
gap between users’ semantic intent and web automation.

From a practical standpoint, training an intelligent statistical
model for the tasks we cover in SemanticOn’s user evaluation would
be effortful. Systems like Calendar.help [22] require many expert
heuristics and even human workers to automate a very specific task
in event scheduling across different parties. In SemanticOn, users
compromise some effort by doing two rounds of demonstrations of
their desired web actions. Still, the automation tasks can be general-
ized to a diverse set of data on many different websites. Introducing
similarity-based models in symbolic systems does present a new
source of error as the models can filter content incorrectly, in ad-
dition to program synthesis errors in pure-symbolic systems. To
amend this, SemanticOn provides continuous condition refinement
and output edit/delete options so that users can repair classification
errors easily and yield more accurate results.

Our work does not rely on a specific program synthesizer to
generate a web automation program or a specific machine learning
model to filter content semantically. The novelty of SemanticOn is
the set of condition specification, refinement, and error-correction
interactions, which can be generalized to other PBD systems.
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6.3 User Enters and System Suggests
One emphasis of this project is to compare the usability of the two
semantic condition specification methods. To summarize the find-
ings, participants shifted their preference between System Suggests
and User Enters based on two factors: perceived effort and the type
of content presented. When participants expressed their prefer-
ences and the rationale behind using each specification method, we
also discovered a trade-off between their sense of control and the
perceived effort.

6.3.1 Perceived effort based on content types. Perceived effort plays
an important role in user preference. When it was easy to summa-
rize the target content on which users needed to set conditions,
participants preferred to use User Enters to express their intent
instead of selecting System Suggests, which could be too broad or
too specific. P3 remarked that “[User Enters makes] you feel like [you
have] more control because you are looking for a specific thing.”

On the contrary, when the target content was information-heavy
and hard to encapsulate in a short natural language description,
participants preferred to use System Suggests to highlight the details
and let SemanticOn present potential conditions. P6 commented
that “I do like the possibility of being able to say this is what I see in
the image [based on System Suggests]... and [highlight] a part of the
image that I think is important.”

When participants were free to use both User Enters and System
Suggests (i.e. Task5 in Appendix Fig 8), we found that text content
inherently took more effort to process, and 7 out of 10 participants
opted to use System Suggests to avoid reading a large block of
text. In contrast, despite containing a variety of objects and entity
relationships, the corresponding image content could be encoded
and summarized more quickly, and 9 out of 10 participants chose
to specify their intents with User Enters.

This preference based on content type persisted during condition
refinement in semi-automation and full automation modes. Partic-
ipants expressed difficulty in parsing textual information rapidly,
as they could not distinguish whether the system made the correct
selection. P3 said that “text task in general is much more difficult,”
and P5 commented, “when it comes to text task, I’m a little lazy to
read through all this... so system can just get me relevant keywords.”
Our observations support this as users were far more likely to re-
pair errors for image tasks than text tasks by deleting inaccurate
conditions and incorrect results. Participants can quickly identify
whether an image fits the condition set, but they can not parse
through a block of text as the automation quickly processes each
row of content. Based on this finding, future designs should account
for the processing effort for text content and provide users more
time and aid in understanding and summarizing the information.

6.3.2 Sense of Control and mental effort trade-off. Another key
factor for specification preference was the sense of control. Three
participants (P3, P7, P10) listed a better sense of control as to why
they preferred User Enters, where they could tailor the condition
using their terms. In addition, in cases where System Suggests sug-
gestions were inaccurate (e.g., failing to detect relevant text entities
or generate image captions at the appropriate granularity), some
participants (P2, P4, P6, P10) switched to User Enters.

However, there was a trade-off between the sense of control and
the required effort. Participants rated a lower ease-of-use score
on average for User Enters (5.1 versus 5.7 for System Suggests), de-
spite it having fewer interaction steps. Three participants (P4, P5,
P10) pointed out that they preferred System Suggests due to the
convenience and ease of mental effort. System Suggests is also ad-
vantageous in reporting details that escaped the user’s attention.
For example, P4 pointed out that they preferred System Suggests
mode because it sometimes captured things that the user failed to
recognize or think of. Additionally, P7 mentioned that they “quite
like System Suggests more, [because it is] more systematic and high-
lights specific things.” Participants could avoid cognitive overload
by handing the processing labor to SemanticOn through System
Suggests, but they were limited to the generated set of conditions
for each item. This trade-off also affects participants’ usage of error
handling features during automation. With the increased cognitive
load in User Enters, participants are much less likely to pause and re-
pair their mistakes than when using System Suggests. However, this
could be explained by participants adopting less accurate prompts
from System Suggests, which leads to more errors overall for users
to fix. Future work could potentially create a combined approach
where users can edit system-suggested conditions, yielding a sense
of control and avoiding heavy user efforts.

6.4 System Effectiveness
Most participants (8/10) agreed that SemanticOn is an effective tool
for web automation and that the condition specification aspect is
useful. Compared with manual effort and traditional data scraping
methods such as writing automation scripts, participants found Se-
manticOn’s no-code solution novel and easier to use. P5 mentioned
that in manual scraping scenarios, “Control-F would only get you
so far” and that the system is “much easier than writing your own
script...[and] more functionalit[ies]” In addition, P7 thought this tool
“would be super helpful for someone not comfortable with code. [It
provides] low effort but maximum reward.”

More than half of the participants (6/10) believed that Seman-
ticOn could be applied to realistic tasks. However, some focused
on the conditional selection aspect, and others emphasized on the
complexity of the task. For example, P2 commented that the system
is “very good for selective tasks [when you] only want a few images
from a lot of them.” Similarly, P5 suggested that SemanticOn could
be used for websites without robust filtering, search engine, or cat-
egories because “it could easily make any website sort-able.” On the
other hand, P1 enjoyed using this tool on Task 5 with both image
and text conditions combined and proposed that “this type of tool
would benefit... power users [for tasks] like creating a dataset...[and]
dealing with complex things.” These reports provide evidence for
the need of no-code solutions in conditional web automation tasks.

6.5 System Limitations
There are several limitations to our system. First is the efficiency
of coordination. As mentioned, some participants found the refine-
ment process complicated and slow and were reluctant to utilize
the functionality to increase system accuracy. In future designs,
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the researchers could simplify the user interface and the interac-
tion steps and condense the system prompt information to reduce
cognitive load.

Another limitation is the relatively low accuracy of the machine
learning models it relies on to classify text and image content. Par-
tially, this relates to a design decision we made when building
SemanticOn. We first used two state-of-the-art models—OFA [74],
which uses a sequence-to-sequence learning framework, and Im-
ageAI, which uses a convolutional neural network [56], for image
captioning and object detection, and we were able to achieve high
accuracy. However, the image processing was computation-heavy
and took more than 30 seconds per image on an off-the-shelf laptop.
To reduce the gulf of evaluation [62], we switched to the Microsoft
Azure computer vision model [32] for near-instant cloud processing
but with lower accuracy and detail level for some content domains.
Similarly, for key phrase extraction, we employed the Microsoft
Azure language model, sending text contents via REST API calls
for near-instant processing. But the extracted key phrases often
have a low level of abstraction (i.e. extracting entities and nouns in
a sentence without indication of interaction) and could not provide
high-level descriptions like those used for image captions.

Additionally, SemanticOn builds upon an existing symbolic pro-
gram synthesis system, WebRobot, which has its own constraints
and requirements. And the introduction of similarity-based ma-
chine learning models also presents ambiguity to the source of
error between incorrect program synthesis steps and result mis-
classifications. The user might be confused when encountering
unexpected behavior, as it could be a product of a user demon-
stration error or the system’s misunderstanding of user intents,
which requires a different workflow to repair. However, in our user
study, we emphasize repairing errors from machine learning model
mislabelling as that is the novel part of SemanticOn.

6.6 Future Work
We summarized three points of feedback that are relevant for fu-
ture works. First, we found that participants spent a longer time
encoding and processing texts than images. This is coherent with
previous studies on human capability in consuming different types
of information [53]. But, this finding is significant in full automa-
tion, when the system rapidly loops through web page content,
giving users little time to identify potential selection errors. Future
works could enable multi-modal interaction (e.g., voice) to reduce
the effort of information processing [20]. Additionally, one can
provide more indicators for users to quickly recognize the informa-
tion represented in text elements (e.g. highlighting matching key
phrases) and decide whether the content should be included based
on the semantic condition.

Second, participants separately favored one of the two condi-
tion specification methods, User Enters and System Suggests, de-
pending on the content type and the amount of information they
needed to process. Similar to the neurosymbolic program synthesis
approach [16, 65], future works could create a unified technique
where users could benefit from the instant and comprehensive re-
sults from machine learning models while preserving users’ power
to specify conditions on their own terms.

Lastly, future designs could further improve the system usability
by reducing the mental effort. The dual process of collaborating
with an AI on both demonstrating web macros to synthesize an
automation program and specifying semantic conditions to filter
web content requires a decent amount of mental effort, especially
for users who are less familiar with programming or web scraping.
Therefore, future designs should alleviate users’ cognitive load with
a more minimalist UI and more user guidance.

7 CONCLUSION
In this work, we designed and developed SemanticOn, a collabora-
tive system that allows users to specify and refine visual and textual
conditions through user-entered descriptions and system-suggested
prompts in a web automation program. In a system evaluation, we
found that participants can effectively use SemanticOn to create
conditional filters and refine them via continuous human-AI collab-
oration, collecting selective web content with high accuracy. Par-
ticipants’ feedback also suggested that a guided semi-automation
mode, where users authorize system predictions, helped clarify user
intents. We also found a trade-off between User Enters and System
Suggests regarding user effort and the sense of control. Our work
can point directions to future system and interaction designs for
user-intent specification and refinement in a continuous human-AI
collaboration setting.
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A APPENDIX

# Task Description Condition
Type

Inclusion Example Exclusion Example

1 Download pictures with a
dog and a cat interacting

Image
only

Dog and cat interacting Cat only, no interactions

2 Scrape book descriptions
that highlight a female pro-
tagonist’s story

Text only

Heroine perspective No female perspective

3 Download photos if it con-
tains multiple people inter-
acting

Image
only

Two people interacting No interactions

4 Scrape movie star biogra-
phies that writes about
their acting

Text only

Biography includes acting No acting in biography

5 Scrape the description and
download the image if: 1)
Text mentions outdoor ac-
tivities and 2) Image con-
tains mountain and water

Text and
image

Image has mountain and
water and description men-
tions outdoor activities No outdoor activity de-

scription, no mountains

Figure 8: Task descriptions with inclusion and exclusion examples
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