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Abstract
AI programming tools enable powerful code generation, and recent
prototypes attempt to reduce user effort with proactive AI agents,
but their impact on programming workflows remains unexplored.
We introduce and evaluate Codellaborator, a design probe LLM
agent that initiates programming assistance based on editor activi-
ties and task context. We explored three interface variants to assess
trade-offs between increasingly salient AI support: prompt-only,
proactive agent, and proactive agent with presence and context
(Codellaborator). In a within-subject study (𝑁 = 18), we find that
proactive agents increase efficiency compared to prompt-only par-
adigm, but also incur workflow disruptions. However, presence
indicators and interaction context support alleviated disruptions
and improved users’ awareness of AI processes. We underscore
trade-offs of Codellaborator on user control, ownership, and code
understanding, emphasizing the need to adapt proactivity to pro-
gramming processes. Our research contributes to the design explo-
ration and evaluation of proactive AI systems, presenting design
implications on AI-integrated programming workflow.

CCS Concepts
• Human-centered computing → Interactive systems and
tools; Empirical studies in HCI.
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1 Introduction
Large language models (LLMs) have enabled generative program-
ming assistance tools to provide powerful in-situ developer sup-
port for novices and experts alike [54–56, 70, 86]. Many existing
LLM-based programming tools rely on user-initiated interactions,
requiring prompts or partial code snippets as input to provide
sufficient context and to trigger help-seeking [52, 65, 71, 76, 86].
These systems offer help in the form of code output and natural
language explanations to assist users with coding tasks. However,
research indicates that users invest considerable effort in formu-
lating prompts, interpreting responses, assessing suggestions, and
integrating results into their code [52, 69, 86].

To alleviate the user intent specification costs, recent AI program-
ming tools and designs aim to become more autonomous, allowing
the system to initiate interaction and provide proactive assistance.
Tools like Github Copilot [4] and Visual Studio’s IntelliCode [83]
offer the auto-completion feature, which fills the code line as the
user is typing, to alleviate prompt engineering efforts and proac-
tively provide in-situ support. However, the AI tool’s generated
code is not always accurate and the output still requires significant
user effort to verify [60, 69, 85, 86]. To address this, commercial
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and research prototypes constructed intelligent AI agents with dis-
tinct focuses on the timing of assistance, the representation of the
agent, and the scope of the interaction context, aiming to work with
the user as collaborators and tackle coding tasks autonomously
and preemptively. These approaches involve advancing on the tim-
ing of auto-completion feature to proactively make intelligent file
changes with an AI caret in the code editor [13], representing the
AI’s presence in the editor with an automated AI cursor [14], or
grounding interactions context in different scopes, such as con-
versational dialogue [5, 19, 76], specific code lines [4, 52], or an
agent-managed workspace to tackle software engineering tasks au-
tonomously [15, 89, 92]. However, the effects of these new designs
of system-driven programming assistance on the human work-
flows, compared to the existing user-initiated paradigm, remain
to be explored. Visions of more “proactive1” AI programmers addi-
tionally raise questions about the potential for harm. Researchers
have raised on concerns that excessive automation without proper
human control can lead to unreliable and unsafe systems [79], and
thus some AI systems deliberately avoid proactive AI assistance
[76]. Therefore, there remain the questions of when should AI pro-
gramming tools provide proactive support, how should the support
be delivered, and where should the user interact with such support.
Subsequently, what are the effects of a proactive AI programming
tool on user experience? In which programming processes and
tasks is proactivity helpful, and where might it be harmful?

This research explores the design space of proactive AI pro-
gramming tools in three dimensions – the timing of assistance,
the representation of the AI programming tool, and the scope of
interaction context. We then evaluate the effects of this human-AI
interaction paradigm on software engineering practice, illustrat-
ing the advantages and drawbacks to provide insights for future
designs. We were guided by these research questions:

• RQ1: How can we design proactive assistance in an AI pro-
gramming tool to reduce user effort?

• RQ2:What are the benefits and drawbacks of a proactive AI
programming tool compared to user-initiated systems?

• RQ3: In which programming processes and task contexts
can proactivity be helpful, and where can it be harmful?

To answer these research questions, we incorporate theories of
interruption management, social transparency, and help-seeking
behavior in programming (Fig.1) to identify specific design ratio-
nales for each dimension. Informed by prior literature, we develop
Codellaborator, a technology probe [49] that employs an AI pro-
gramming agent providing proactive timings of assistance to explore
different forms of human-AI programming collaboration. Codellab-
orator’s proactive abilities allow it to initiate interaction via mes-
sages (Fig.2.a,e) in response to various user activities in the coding
environment, and also to commit code edits directly in the editor
(Fig.2.c). To mitigate potential disruptions, we derive three design
rationales for the timing to introduce assistance and operationalize
them into six design principles in the context of a coding task and
an editor environment (Table 1). To evaluate designs of AI agent
representations in the editor, we additionally implemented presence
features for the AI agent. In Codellaborator, the agent presence is

1In this paper, we refer to system-initiated assistance in the programming environment
as “proactive” programming support.

represented by a cursor and caret (Fig.2.d,b), capable of autonomous
movement around the editor, signaling its action, status, and atten-
tion focus. To evaluate different scopes of interaction, both the agent
and the user can utilize global chat messages on the side-panel, or
initialize locally-scoped threads of conversations called “breakouts”,
anchored to specific locations in the editor as context (Fig.2.a).

To study the impact of proactive support in an autonomous
coding agent on human-AI collaborative programming workflows,
we conducted a within-subject experiment using three versions of
Codellaborator with 18 participants. In the PromptOnly condition,
the ablated system only responds to user prompts and in-line code
comments, similar to ChatGPT [2] and Github Copilot [4] with low
to no proactive features. In the CodeGhost condition, the system
proactively initiates interactions and assistance, but the interactions
are constrained in the global context of chat messages and direct
code changes, with no visual representation of the agent. In the
Codellaborator condition, all of the agent’s visual representation,
scopes of interaction, and proactive timing features are utilized.

Our study showed that, through the heuristic-based timing
to provide contextualized assistance at task boundaries, the
CodeGhost condition reduced the time users took to comprehend
system responses compared to the PromptOnly condition. But it
also caused workflow disruptions and diminished users’ awareness
of AI’s actions, as participants reported a lack of clear signals for
agent interaction and working context. In contrast, the Codellabo-
rator condition, with its agent visual presence and flexible context
scope, significantly lessened these disruptions and improved users’
awareness of the AI, leading to a user experience more akin to
collaborating with a partner than using a tool. Participants felt am-
bivalent to adopt highly proactive programming assistants. Many
embraced the efficiency and capability to allow developers to fo-
cus on high-level designs rather than low-level work, but some
participants experienced a loss of code understanding, expressing
concerns on maintainability and extendability of the code artifact.

In the discussion, we summarize our findings and propose five
design implications for proactive assistance in human-AI program-
ming. Through these findings, we present a deeper understanding
of the impacts of proactive AI support on programming experience
and identify key areas that require further research. In this work,
we contribute:

• A design exploration to enable different interaction timings,
visual representations, and interaction scopes of proactive
assistance that expand upon existing AI programming sys-
tems.

• Codellaborator, as a technology probe that implements a
proactive AI agent to study in-situ assistance and communi-
cation in programming support.

• A empirical study to assess the impact of proactive agent
support in a code editor, providing design implications for
future AI programming tools.

2 Related Work
2.1 AI Programming Tools
AI-assisted programming tools are increasingly integrated in devel-
opers’ workflows. However, even tools that prioritize productivity,
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such as Github Copilot [4], do not consistently demonstrate a signifi-
cant improvement over traditional code completion tools such as In-
telliSense [6, 56, 86]. Existing research to improve AI programming
support has focused on improving the quality and usability of the
code generation. For example, recent works made advancements in
structuring code generation [93], expanding support to specific task
domains (e.g., data analysis) [65], or highlighting high-probability
tokens to reduce uncertainties [88]. However, AI-generated assis-
tance could result in discrepancies with the user’s expectations, cre-
ating barriers to interpreting and utilizing the code output, or even
steering the AI in the desired direction in the first place [86]. An-
other recurrent concern is the potential mismatch in expertise levels
between developers and AI agents, leading to reduced productivity
in pair programming scenarios [61]. To improve the usability of
generated code, researchers enhanced the context within the scope
of interaction in the code editor. For example, Yan et al. proposed
Ivie, which generates visible explanations positioned adjacent to the
code [91]. Similarly, recent systems improved the discoverability of
the code suggestion scope [85] or provided more in-IDE code con-
texts to scaffold user understanding [71]. Alternatively, some tools
integrates dialogue-based interactions to enable holistic queries
at the editor level and enhanced interaction histories [5, 19, 76].
Expanding the scope further, Meta-Manager enhances developers’
sensemaking by collecting and organizing meta-information, such
as code provenance and design rationale, making it easier to answer
complex questions about the code base [46]. However, it remains
unclear whether these approaches to scoping human-AI collabo-
ration will be effective in a system-initiated paradigm and further
research is needed to investigate the impact of different scopes of
system-initiated actions on developer experience.

Existing AI programming tools predominantly operate within
the command-response paradigm, where the user triggers help-
seeking and obtains generated code and explanations. An emerging
approach to enhance AI programming is leveraging LLMs’ gener-
ative power to build intelligent programming agents that proac-
tively support users and autonomously complete tasks. Efforts to
develop proactive tools that provide automatic support have been
explored across various domains, including personalized notifica-
tions for weather or calendars [77, 82], health and fitness interven-
tions [75, 78], and support for office workflows [28, 51, 63]. Well-
designed, effective invocation of systems’ proactive assistance can
lower the cost of user manipulation, resolve uncertainties preemp-
tively, and lead to unintentional learning of the system’s functionali-
ties [1, 47, 63]. Meanwhile, poorly designed proactive assistance can
lead to negative user experiences, diminished control [27, 66, 68],
and in some cases, rendering the tool ineffective [28, 51, 66]. While
general guidelines on designing mixed-initiative interfaces and
human-AI interactions have been established [23, 47], it is uncer-
tain how the design principles can translate to concrete system
designs under the context of LLM-assisted programming. For in-
stance, while the timing of assistance is one key metric of human-AI
interaction design, existing AI programming systems almost al-
ways provide immediate response upon output generation without
considering interruption to the user’s workflow.

Recent research and commercial prototypes have explored many
representation of the AI agent to facilitate proactive support in

programming. Some approaches include expanding on the auto-
completion feature to proactively make intelligent file changes with
an AI caret in the code editor [13], or manifesting the AI’s pres-
ence in the editor with an automated AI cursor [14] that mimic the
user’s workflow and automate repetitive tasks. Some tools take an
additional step towards fully autonomous AI and construct a group
of AI agents capable of composing the task plan with executable
steps and hosting its own workspace with code editor, console, and
web browser to autonomously tackle software engineering tasks in
response to a single user prompt [15, 89, 92]. However, the accuracy
of the task completion suggests that the fully autonomous agent
might not yet be fully scaled to real-life programming tasks. For ex-
ample, based on evaluation on SWE-bench [53], a dataset designed
to assess AI agent’s capabilities in real-world Github issues, SWE-
agent and OpenDevin reported 12.5% and 26.0% task completion
rate. This prompts a more balanced design where both the human
and the AI agent are engaged in the programming process.

Further, the impact of proactive programming assistance for
human users, as opposed to the current prompt-initiated paradigm,
remains to be formally assessed. Similarly, the resulting benefits
and drawbacks to user experience from employing these specific
design approaches need to be measured. Our research not only
aims to explore how to effectively design and integrate proactive
AI assistance into developers’ workflows but also seeks to gain a
deeper understanding of the impact on the programming experience
through a comprehensive study.

2.2 Proactive Assistance and Interruption
Designing a proactive AI assistant that enables positive experiences
and outcomes is a challenging endeavor. The nuances of effective
human-to-human collaboration are still not fully understood and
vary greatly depending on the context, making it difficult to craft ef-
fective human-AI collaboration paradigms. Past research has shown
that two factors, i.e., proactivity and interruption, play pivotal roles
in shaping the outcomes of team collaborations. Prior work in psy-
chology has revealed that proactivity, when effectively managed,
can provide positive affective outcomes during collaborative work
[57]. However, the current landscape of human-AI collaboration
is often characterized by either human-dominant or AI-dominant
dynamics. In such situations, both human and AI agents operate re-
actively. This paradigm often leave the cognitive burdens for human
developers due to the expression, sensemaking, and verification
process for the code assistance [60, 86].

Interruption, or “an event that breaks the coherence of an ongoing
task and blocks its further flow, though allowing the primary task
to resume once the interruption is removed” has been a subject of
study for decades [64]. Numerous studies have highlighted the detri-
mental effects interruptions can have on users’ memory, emotional
well-being, and ongoing task execution [24, 35, 48]. Specifically,
in the context of software engineering, Solingen et al. defined in-
terruption as a multi-phase process that occurs when a developer
stops their planned activities, handles the interruption, then finally
recovers by returning to the point in their work at which they were
interrupted [87]. In existing practices, Ko et al. observed developers
daily activities and identified multiple interruptions per day, mainly
due to communication requests and notifications [58]. Parnin et
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Figure 1: System Design Dimensions. Codellaborator explores three design dimensions. Each dimension is motivated by relevant theories
under the framework of effective human collaboration; The Timing of Assistance (DG1) design takes inspiration from works in proactivity [57]
and interruption management in human collaboration [24, 35, 48, 50, 64, 67] and specifically the software engineering context [58, 73, 74, 87].
The AI Agent Representation (DG2) dimension draws from literature in social and interaction transparency [40, 43, 81], pair programming
signals [29, 33, 37, 59, 80, 90], and existing AI programming agent designs [39, 89, 92]. The Scope of Interaction (DG3) design is informed by
works in information foraging in coding [22, 36, 38, 41, 45], community question-answering tools [34, 42, 44], research in understanding
developer need and context [31, 32, 62], and editor context scopes for AI code generation [46, 71, 76, 85, 91]. Codellaborator is a design probe
that explores designs that intersect each dimensions and evaluates their impacts on users’ programming experiences. Two other probes are
described in Section 5.2 (DG4). CodeGhost explores the effect of proactive timing heuristics without the agent representation and scope of
interaction designs, and PromptOnly is the baseline condition that does not inherit any of the design explorations and thus is not illustrated
on the diagram. Please note that we categorized each reference based on the primary aspect it informs within our framework, but some of
the cited works may span multiple dimensions and we acknowledge their relevance across overlaps.

al. also found that developers spend significant time rebuilding
context after each interruption, creating “resumption lag” which
increases errors and frustration [73, 74]. To mitigate the challenges
posed by interruptions, we drew insights from psychology and
behavioral science to foster collaborations that would be perceived
as less disruptive. For instance, as the perceived level of disruption
is influenced by a user’s mental load at the time of the interrup-
tion [24, 25, 35], we designed interactions that were aware of a
user’s working context before generating notifications. Further-
more, prior works have highlighted that people experience varying
degrees of disruption during different sub-tasks [35, 48, 50, 67]. We
apply these principles when designing the timing of service of our

probe to adopt a proactive collaborator role at moments when the
programming task context was most appropriate.

2.3 Help-Seeking and Collaboration in
Programming

Our research was additionally informed by existing research on col-
laboration during software engineering, specifically help-seeking
behaviors and pair programming.

2.3.1 Help-Seeking in Programming. Developers often forage infor-
mation from the code itself to resolve their issues, during processes
like debugging [41]. To facilitate this process, researchers have built
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tools to scaffold navigation and understanding the source code [36].
Documentation is another source developers rely on to find as-
sistance. However, studies have identified challenges for users to
pinpoint relevant information and to maintain the documentation
in an up-to-date state [22, 38]. Annotations on documentation, as
demonstrated in Adamite, can support comprehension and fos-
ter collaboration by addressing gaps in traditional documentation
[45]. To seek more targeted help, Community Question-Answering
(CQA) websites, such as Stack Overflow [12], also allow developers
to post questions but also archive answers for future reference, a
concept rooted in Answer Garden’s creation of an “organizational
memory” [20, 21]. To more seamlessly connect developer’s working
context to help seeking, researchers have connected the integrated
development environment (IDE) with web browser [42], web-based
Q&A search [34], and annotated the source code with browser his-
tories [44]. However, many questions that are well-suited for an
intelligent agent are misaligned with the design of CQA websites.
A previous study utilized a “hypothetical intelligent agent” as a
probe to understand developers’ ideal help-seeking needs [32]. The
findings, along with other studies’ results, highlighted several limi-
tations of CQA sites, including delayed feedback, lack of context,
and the necessity for self-contained questions [62]. Consistent with
this, prior work has advocated for systems that intuitively captured
a developer’s context and used it to enable developers to identify
the scope of assistance by selecting a code snippet, asking the
system to “please refactor this”, and promptly receiving pertinent
responses [31]. Like described in Section 2.1, existing AI program-
ming tools often employ different scopes of interaction with the
intelligent assistant, translating the consideration of interaction
context scope from human help-seeking to human-AI collaboration.
Inspired by this research, we designed our probe to allow users to
seek help with different granularity of support, receiving assistance
on the overall codebase via a global chat interface and on specific
code snippets via localized conversation threads. This way, we can
evaluate the impacts of different scope of interactions in a more
system-initiated programming paradigm.

2.3.2 Pair Programming. Pair programming is a paradigm where
two users collaborate in real-time while at a single computer, with
one user writing the code (i.e., the driver) and the other review-
ing the code (i.e., the observer) [33]. Pair programming has been
shown to lead to better design, more concise code, and fewer er-
rors within approximately the same person-hours [29, 90]. Other
research has reported that these benefits may have been due to
the awareness of another’s focus within the code, which can be
invaluable for problem-solving [59]. For example, Stein and Bren-
nan found that when novices observed the gaze patterns of expert
programmers during code reviews, they pinpointed bugs faster [80].
However, the most prominent challenges associated with pair pro-
gramming include cost inefficiency, scheduling conflicts, and per-
sonality clashes [29]. Facilitating visible presence and actions be-
tween collaboration partners has previously demonstrated its effi-
cacy in physical workspaces [37]. Our design probe loosely adopted
the pair programming paradigm where the AI agent and the user
can adapt and exchange the roles of the driver and the observer. We
also implemented visible presence and clear context information to
enhance mutual awareness between the user and the AI.

3 Design Goals
To investigate the effects of a proactive AI programming agent on
user workflow, we used a technology probe — an instrument that
is deployed to find out about the unknown—returning with useful or
interesting data [49] — to explore the design space of the timing,
representation, and scope of interaction (RQ1) with the following
design considerations:

• DG1: Establish heuristics for timely proactive AI as-
sistance by anticipating programmer needs based on editor
activities and offering suggestions, insights, or corrections
to support their tasks.

• DG2: Represent AI agent’s presence using visible cues
to indicate its actions, intentions, and decision-making pro-
cesses, enhancing the user’s awareness of the agent’s assis-
tance.

• DG3: Provide flexible scopes of interaction by designing
interactions at both a global code editor level and at a local
code-line level to meet different abstractions of user need
and improve context management.

• DG4: Support different mechanisms in the probe and
creating different versions of the system to structure
comparisons and evaluations of different designs

4 The Codellaborator Probe
In this section, we introduce threemain components of the Codellab-
orator probe and how they are implemented to achieve our design
goals: timely proactive support, AI agent’s visual representation,
and multi-level scopes of interaction, supporting modular com-
parisons of different mechanisms. Below we detail the design and
implementation of the probe.

4.1 Timely Proactive Programming Assistance
Timing services based on context is a key consideration in AI system
design [23]. To explore the design for proactive timings specifically
in the context of programming support, we adopted a set of findings
from research on interruption management, and distilled them down
to three proactivity design principles [25, 35, 50, 67]. To operational-
ize, we instantiated six proactivity features in our design probe to
minimize interruptions to the user (DG1), summarized in Table 1.
The proactive assistance in Codellaborator serves to present one
design approach that expands upon existing AI programming fea-
tures, allowing us to investigate the effects of an AI agent equipped
with highly proactive capabilities on users’ programming workflow.

The first principle states that the most opportune moments for
interruption occur during periods of low mental workload [25, 35].
In our system, we predict low mental workloads when users are
not performing actions, such as writing code, moving around the
file, and selecting ranges (i.e. when the user is idle). Since idleness
could also mean the user is engaged in thoughts, the AI agent only
intervenes after an extended period of inactivity in both editing
and cursor movement, which could signal that the user is mentally
stuck and needs assistance (Table 1, 1). This is a rough estimation to
interpret the user’s working states, and future works could employ
more advanced models to identify the user’s cognitive process.

The second principle posits that people perceive interventions
as less disruptive at the beginning of a task or subtask boundaries
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User Action System Reaction Trigger Possible Action Space
Design Rationale 1: intervene at moments of low mental workload [25, 35]
1. User has been idle
(no code edit,
caret movement,
or selection change)

Initial idle threshold is 30 seconds.
If user ignores and maintains idle,
add 30 seconds to the threshold.

1. If the user is on an empty
or trivial line (e.g. pass), no response
2. Offer help via message

Design Rationale 2: intervene at task boundary (i.e. when completed one subtask and formulating the next) [50, 67]

2. User has completed
a block of code

User outdents from a code scope in Python
(e.g. an if- statement, loop, or function).

1. If block is insignificant, no response
2. Notify user of code issues
3. Suggest optimization to user
4. Adds documentation in editor

3. User has executed
the program

User executes the program in editor.
Output displays in console.

Acknowledge the code execution.
If output contains error, offer to help.

4. User has made
a multi-line
code change

User pastes code
that’s more than 1 line.

1. If change is insignificant, no response
2. Add documentation in editor
3. Notify user of code issues

Design Rationale 3: intervene when user is potentially communicating through implicit signals [4, 5, 71]

5. User has made
a code comment

User starts a newline after
a single line or multi-line comment.

1. If nothing to address, no response
2. If the comment describes function,
generate code suggestion
3. If posing a question, offer help

6. User maintains selection
on a range of code

Initial selection threshold is 15 seconds.
If user ignores and maintains selection,
add 15 seconds to the threshold.

1. If insignificant selection, no response
2. Explain the selected code
3. Analyze selection to error-check

Table 1: Proactivity features in Codellaborator. The table details the design rationales derived from interruption management literature
[25, 35, 50, 67] and prior tools [4, 5, 71]. We designed six proactivity features triggered by user activities. For each feature, the AI agent
evaluates the working context (i.e. the changed code, the user’s caret location, and local file content) provided via prompts (Appendix A) and
decides on one action from the defined list of possible actions, employing necessary tools to make editor changes.

[35, 50, 67]. Task boundaries are defined as when one subtask is
completed (evaluation) or when the next subtask begins (goal for-
mulation) [67]. To convert this implication to a system feature, we
used event listeners to detect users’ task beginnings and boundaries
in programming, specifically, when the user completed a block of
code (i.e., after outdenting in Python), executed the code, or made
a multi-line edit (i.e. pasting a block of code) (Table 1, 2-4).

Finally, we draw inspiration from existing AI programming tools
[4, 5, 71] and propose the third principle: intervene when users
are communicating through implicit signals. Existing systems don’t
always use direct messages as the means of human-AI communica-
tion. For example, in Github Copilot [4], creating a new line after a
comment prompts the tool to generate code based on the comment
content. Another example is in Nam et al.’s work, where the system
uses the user’s current selection in the editor as context to provide
code generation [71]. While these features demonstrate a low level
of proactivity individually, we assimilate the existing designs to
enhance the proactivity of Codellaborator.

In each proactivity feature, the AI agent receives the user’s caret
position and local code context. It then leverages the LLM to rea-
son, triage, and decide whether to intervene, selecting an option
from the defined list of editor actions if deemed necessary. We
also implemented adaptiveness within the AI agent’s proactivity.

For example, each time an idle or selection intervention (Table
1.1,6) was ignored by the user (i.e. no follow-up interaction with
the agent), we imposed a penalty on the action and increased the
time threshold to trigger an intervention to make it less frequent in
the future to decrease unnecessary interventions. Additionally, we
prioritized the user’s initiative and actions over the AI agent’s, pro-
viding the user with ultimate control. When the user was initiating
a conversation with the assistant, we canceled pending AI agent
actions and active API requests, so as to not disrupt the user’s train
of thought and wait for their updated input. However, to support
parallel workflows (e.g., when the user is writing code while the
agent proactively modifies other parts of the code), the agent does
not cancel its actions if the user is making changes in the editor. To
enable users to control the amount of visual signals they receive,
the chat interface could be fully collapsed, providing more space
for the code editor and hiding potentially distracting messages.

In general, these guidelines lead the probe system to create proac-
tive LLM-based agents for coding support. The agent accounts for
the user’s current text context and past interactions before evaluat-
ing which action to take and when to intervene. When appropriate,
the agent can proactively make requests to the LLM and take
agent actions to help facilitate direct communication and collabo-
ration with the user. With this approach, we attempt to improve
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a
b

d

c

e

Figure 2: Codellaborator UI in action. The user asks the AI agent for help with implementing get_sorted_events using a breakout chat
a○ on line 30. The AI adds code with its caret b○ in the editor and replies to the user in the breakout to discuss the next steps. The purple
highlight c○ indicates the provenance of the added code and fades away after 5 seconds. The AI agent’s cursor displays “Thinking...” d○ to
indicate its working process of generating a response. In the main chat panel to the left, messages are automatically organized by topic with
summaries e○. Note that during actual usage, when a breakout is opened, the main chat panel is blurred to alleviate cognitive load and signal
context focus switch, but this feature was disabled for UI demonstration purposes.

the intervention timing using both rule-based heuristics and LLM
decision-making predictions, constraining the model to take fea-
sible and reasonable actions in a programming assistance context.
We conduct interaction-level analysis in a user study to evaluate
the effectiveness of each timing principle and offer design insights
for future proactive AI programming systems.

4.2 AI Agent’s Visual Representation in the
Code Editor

To explore the effects of enhanced visual representation, our proto-
type makes visible the agent’s actions, status, and process (DG2).
Codellaborator manifests the AI’s presence with visual cues guided
by the Social Transparency theory [40, 81] and existing design
explorations for programming agents [13, 14, 39]. Specifically, we
were inspired by the concept of interaction transparency, which
posits that the visibility of the presence of other parties and sources
of information in human collaboration can reduce interaction fric-
tion [40, 43].

To do so, we added a visual caret and cursor in the editor
workspace automated by the AI agent. The AI caret indicated its
position in the text buffer and moved as the AI agent selected and

edited code (Fig.2.b). The AI cursor, which moved independently
of the caret, serves as an indicator of the AI agent’s “attention”
and demonstrates its actions (Fig.2.d). For example, to rewrite a
block of code, the AI cursor would select a range of code, delete
the range, and stream the new code in a typing motion, similar to
how a human user would act. We introduced human elements into
the AI agent’s actions to elicit the social collaboration heuristics to
facilitate better human-AI collaboration [39].

While the AI agent is processing or taking action, a thought-
bubble overlay floats adjacent to the cursor and contains an emoji
and short text to convey the AI agent’s working state (Fig.2.d). For
example, a writing hand emoji with “Writing code...” indicated that
the AI agent was writing code in the editor, whereas a tool and
laptop emoji with “Program executing...” indicated that it was ana-
lyzing the program execution output. The system also indicated its
working progress by streaming a response with a “pending” indica-
tor in the chat panel and a “Loading” signal on the AI cursor, thus
preventing confusion about whether the system was responsive or
stalled. This design enabled users to be aware of system actions
even when the chat panel was collapsed, allowing them to decide
whether to engage based on the status displayed. The option to
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attend to the textual messages or the visual presence afforded dif-
ferent levels of interaction details, handing users control over the
amount of information to be received from the AI agent.

4.3 Different Scopes of Interaction
To examine the effects of different scopes of human-AI interaction
within the code editor (DG3), Codellaborator affords two channels
for either the user or the agent to initiate an interaction. This was
inspired by the literature on help-seeking in programming, where
users often need to define the context (i.e. relevant code snippets
[31], code annotations [45], or search history [44]) to request assis-
tance. Existing AI programming tools often adopt conversational
interactions on a dedicated interface or provide in-line generated
suggestions. To evaluate the effects of different interaction scopes,
Codellaborator includes a global chat side panel, as well as local
threads of conversations anchored in specific code lines, called the
“breakout”. The user can initiate breakout chats for specific local
context; the agent also automatically summarizes interactions and
arranges them in relevant locations in the code editor.

To facilitate the transition between global and local scopes, the
AI agent consistently tracked many forms of context, such as the
user’s current caret position in the file, the contents of the file,
the user’s activity (or lack thereof), and the editor console output.
Using this context, the AI agent organized the past conversation
context by grouping semantically relevant messages by topic and
“breaking out” the subset of messages from the chat. The selected
messages were collapsed in the main chat panel and anchored to
an expandable thread at the appropriate area of code in the editor
(Fig.2.e). This enabled the conversation about a specific code sec-
tion to be placed directly in a localized context, so the link between
the code and the process that created it was represented visually.
Breakouts also provide an easy way to access past conversations
without needing to scroll through the chat when the collaboration
session is prolonged. The breakout function also required that the
AI agent provide a short summary, which was displayed in the chat
in a collapsed component (Fig.2.e). The collapsed component pre-
served the provenance of the original messages and also provided
a button to navigate to the attached thread in the code editor. The
new breakout chat remained interactive, so the user could continue
the conversation with the AI agent and suggest edits, ask for expla-
nations, and more, in situ (Fig.2.a). The user could also manually
initiate a breakout in the file. By doing this, they anchored their
queries to a specific line, providing the AI agent with a local scope
of context to inform their responses and/or actions.

4.4 Probe System Implementation
Codellaborator was implemented as a React [11] web application
using TypeScript. The front-end code IDE was built on top of the
Monaco Editor [8]. The code execution relied on a separate web
server powered by Node.js [9] and the Fastify library [3]. The scope
of Codellaborator enabled users to execute single-file Python3 code
for proof of concept. The back-end of the system was powered
by the GPT-4 [72] large-language model that was connected via
the OpenAI API [10]. Specifically, we used the gpt-4-0613 model

which enabled function-calling2. This allowed the system to define
functional tools that the LLM was aware of and could employ to
make editor changes if it saw fit according to a defined schema.
We created four such tools for the model, i.e., to authorize code
insertion, deletion, replacement, and message grouping to create
breakouts. To configure the LLM agent, LangChain [7] was used
to maintain a memory of the past message contexts and provide
system messages to define the role and responsibility of the agent.

To provide a collaborative experience, we delegated the AI agent
with the role of a pair programming partner (system prompt in
Appendix A).We also provided the basic context of the IDE interface,
including the chat panel, the editor, and the console. The AI agent
was asked to follow human pair programming guidelines [33, 90],
which defined the observer-driver responsibilities and enforced a
friendly tone, constructive feedback, and a fair delegation of labor.

5 Evaluation
To study the benefits and drawbacks of our design probe (RQ2) and
understand the human-AI interaction workflows in different pro-
gramming processes (RQ3), we conducted an in-person user study
where participants collaborated with three versions of Codellab-
orator in pair-programming sessions to specifically evaluate and
compare each designed mechanisms (DG4).

5.1 Participants
We recruited 18 upper-level CS students from our university (8
female, 10 male; mean = 21.3 years, SD = 1.49 years, range = 19-24
years; denoted as P1-P18). Participants had a mean coding experi-
ence of 5.6 years. Fifteen of the participants had used LLM-based
AI tools like ChatGPT [2], and thirteen participants used AI tools
for programming at least occasionally. Participants were recruited
via a posting in the Discord and Slack channels for CS students at
the university. Each study session lasted around 90 minutes and
participants were compensated with $40. The study was approved
by the ethics review board at our institution.

5.2 Study Design
We conducted a within-subject study involving three conditions on
three system prototypes to examine the effects of different proactiv-
ity designs compared to a fully user-initiated baseline (RQ2, DG4).
The condition orders were counterbalanced to account for ordering
and learning effects. The underlying LLM in all three conditions
was initialized with the same system prompt (Appendix A) and
parameters (e.g. version, temperature, etc.). The there conditions
are described below:

• The PromptOnly condition was an ablated version of
Codellaborator, similar to existing AI programming tools like
Github Copilot [4] and ChatGPT [2] where users prompt us-
ing code comments or chat messages to receive AI response.
The system only reacts to users’ explicit requests. This sys-
tem did not have access to proactively make code changes
in the editor.

2Atty Eleti, Jeff Harris, and Logan Kilpatrick. 2023. Function calling and other API
updates. Retrieved August 16, 2023 from https://openai.com/blog/function-calling-
and-other-api-updates

https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
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• The CodeGhost condition constructed an AI agent that
takes proactive actions, such as sending messages or writing
code in the editor, to provide help based on user activity
and timing principles. In this condition, the ablated system
did not include any additional indicators of the AI agent’s
presence, and did not support the localized, threaded, scope
of interactions.

• The Codellaborator condition utilized the same AI agent
and proactivity features found in the CodeGhost condi-
tion and additionally utilized the AI agent’s visual features
and interacted with the user at different scopes of context.
In this condition, the full system represented the AI via
its autonomous cursor, caret, and intention signal bubble
(Fig.2.b,d). Moreover, users were allowed to use breakouts to
start localized threads of conversations at different parts of
the code (Fig.2.a). Codellaborator also automatically grouped
relevant messages and organized them into breakouts to
manage interaction context (Fig.2.e).

5.3 Tasks
Three programming tasks involving implementing a small-scale
project in Python (full descriptions in Appendix B; Task 1: event
scheduler, Task 2: word guessing game, Task 3: budget tracker)
were used in the study. The tasks were derived from LeetCode
[16–18] coding problems, which present adequate challenges for
our participant pool within the scope of the study. The particular
tasks are selected to reflect typical programming activities com-
monly encountered by developers, including working with data
structures, control flow, and basic algorithms. We adopted test-
driven development by providing users with a unit test suite for
each task, where they had to implement the specification to pass the
test cases. The tasks were designed to balance practical relevance
and study feasibility, allowing participants to showcase problem-
solving skills and creative design choices within a constrained time
frame. Although LeetCode problems are often designed with one or
two optimized solutions, we modified the problems so users could
take multiple approaches. For instance, one of our tasks involved
implementing an event scheduler. While a brute-force approach
could solve the problem, participants could also explore different
data structures (e.g., priority queues, dictionaries) to optimize ef-
ficiency, or modularize their solution to enhance readability and
maintainability. This flexibility allowed us to observe variations
in user decision-making. The tasks were intentionally open-ended
and can be completed through various designs so that participants
could not directly use task specification as LLM prompt to solve
the problem deterministically. In an attempt to maintain consistent
generation quality across participants, the backend GPT-4 model
was set to 0 temperature to reduce randomness. Based on a pilot
study with 6 users using the Codellaborator condition prototype,
we found that participants were able to complete each task within
20-30 minutes, thus showcasing similar task difficulties. During
the study, the tasks were randomly assigned to each condition to
reduce bias.

5.4 Procedure
After signing a consent form, participants completed each of the
three coding tasks. Before each task, participants were shown a
tutorial about the system condition they would use for the task.
Participants were asked to discuss the task with the AI agent at the
start of each task to calibrate participants’ expectations of the AI
agent and to reduce biases from prior AI tool usage. Participants
were given 30 minutes per task and were asked to adopt a think-
aloud protocol. After each task, participants completed a Likert-
scale survey (anchors: 1 strongly disagree to 7 strongly agree) about
their experience in terms of the sense of disruption, awareness,
control, etc. (Fig.6). After completing all three tasks, participants
underwent a semi-structured interview for the remainder of the
study. Each session was screen- and audio-recorded and lasted
around 90 minutes.

5.5 Data Analysis
We conduct in-depth qualitative and quantitative analysis on the col-
lected data. Qualitatively, the semi-structured interview responses
were individually coded by three researchers. Subsequently, the-
matic analysis [30, 84] was employed by one researcher to distill
participants’ key feedback on the dynamics of human-AI collabora-
tion across different programming processes.

Additionally, we conducted quantitative analysis on task-level
and interaction-level statistics. We recorded the task duration and
the number of test cases completed for all (3 X 18 = 54) task in-
stances. We further logged and analyzed each human-AI interaction
episode during the user study sessions. An episode starts when ei-
ther the user or the AI sends a message, and ends when the user
moves on from the interaction (e.g. starts writing code after read-
ing AI comments, or writes a response message to initiate a new
interaction). The interaction data was then labeled with the times-
tamp, the duration, the expression time (e.g. the time lapsed to
write a direct message to the AI agent), the interpretation time
(e.g. the time lapsed for the user to read the AI agent’s response or
code edit), the current programming process (e.g., design, imple-
ment, or debug), and a description of the workflow between the
human and the AI agent. This process resulted in 1004 human-AI
interaction episodes for our analysis. Aggregating these interac-
tion episodes, we recorded the number of disruptions, defined as
instances when, during a system-initiated intervention, the user
switched their context to process AI’s actions but found them un-
helpful and interruptive, resulting in the dismissal or reversion of
the AI actions. We further analyze the utility and the effectiveness
of each design heuristic for the timing of AI assistance.

6 Results
Among 54 task instances, participants successfully completed the
programming task in 50 instances, passing all test cases. In 4 in-
stances, the task was halted as participants did not pass all test
cases within 30 minutes. The mean task completion time was 16
minutes 46 seconds, with no significant differences across system
conditions, task orders, or tasks. To understand the effects of proac-
tivity on human-AI programming collaboration (RQ2), we first
report participants’ user experience comparison between prompt-
based AI tools (e.g. ChatGPT), their perceived effort of use, and the
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sense of disruption. We then describe participants’ evaluation of
the Codellaborator probe’s key design features, including the tim-
ing of proactive interventions, the AI agent presence, and context
management. Analyzing the 1004 human-AI interaction episodes,
we illustrate how users interacted with the AI agent under different
programming processes, as well as discuss participants’ preference
to utilize proactive AI in different task contexts and workflows
(RQ3). We also discuss the human-AI interplay between users and
different versions of the system, covering their reliance and trust
towards AI, and their own sense of control, ownership, and level of
code understanding while using the tools.

6.1 Codellaborator Reduces Expression Effort
and Alleviates Disruptions

Overall, participants found the increased AI proactivity in the
CodeGhost and Codellaborator conditions led to higher efficiency
(P1, P2, P13, P15, P18). Participants commented that prompt-based
tools, like Github Copilot or the PromptOnly in the study, required
more effort to interact with (P7, P8, P10, P12, P14). This was due to
the proactive systems’ ability to provide suggestions preemptively
(P7), making the interaction feel more natural (P8). After experi-
encing the CodeGhost and Codellaborator conditions, P10 felt that
“in the third one [PromptOnly], there was not enough [proactivity].
Like I had to keep on prompting and asking.”

The proactive agent interventions also resulted in less effort
for the user to interpret each AI action in both CodeGhost and
Codellaborator compared to in PromptOnly (Figure 3). Among 857
recorded episodes where both the user and the AI agent had at least
one turn of interaction (i.e. AI responded to the user’s query or the
user engaged with AI proactive intervention), we observed a signif-
icant difference in the amount of time to interpret the AI agent’s
actions (e.g., chat messages, editor code changes, presence cues)
per interaction across three conditions (F (2,856)= 41.1, p < 0.001)
using one-way ANOVA. Using pairwise T-test with Bonferroni Cor-
rection, we found the interpretation time significantly higher in
PromptOnly (𝜇 = 34.5 seconds, 𝜎 = 30.1) than in CodeGhost (𝜇 =
19.8 seconds, 𝜎 = 17.2; p < 0.001) and Codellaborator (𝜇 = 18.7 sec-
onds, 𝜎 = 14.9; p < 0.001). There was no significant difference in the
time to interpret between the CodeGhost and Codellaborator condi-
tions (p = 0.398; Figure 3). This indicates that when the system was
proactive, participants spent less time interpreting AI’s response
and incorporating them into their own code, potentially due to the
context awareness of the assistance to present just-in-time help. We
did not find a significant difference in the time to express user intent
to the AI agent per interaction (e.g. respond to AI intervention via
chat message, in-line comment, or breakout chat) (F (2,652) = 2.36, p
= 0.095), despite qualitative feedback that the PromptOnly without
proactivity was the most effortful to communicate with.

While proactivity allowed participants to feel more productive
and efficient, they also experienced an increased sense of disrup-
tion. This was especially prominent in the CodeGhost condition,
when the AI agent did not exhibit its presence and provide context
management (P1, P9, P10, P14). Disruptions occurred in different
patterns across the three conditions. In PromptOnly, the scarce dis-
ruptions arose from users accidentally triggering AI responses via
the in-line comments (similar to Github Copilot’s autocompletion)

PromptOnly 
(n=174) 

CodeGhost 
(n=229) 

Codellaborator 
(n=250) 

PromptOnly 
(n=175) 

CodeGhost 
(n=364) 

Codellaborator 
(n=314) 

User Time to Express 
Intent per Interaction

User Time to Interpret AI 
Response per Interaction

Figure 3: The time to express user intentions to the AI and the
time to interpret theAI response per interaction.Users’ expres-
sion time was not significantly different across conditions F (2,652)
= 2.36, p = 0.095). Users’ interpretation time varied (F (2,856)= 41.1,
p < 0.001), and was significantly lower for CodeGhost and Codellab-
orator conditions than in PromptOnly.

while documenting code or making manual changes during system
feedback, leading to interruptions. In CodeGhost, disruptions were
due to users’ lack of awareness of the AI’s state, leading to unantic-
ipated AI actions while they attempted to manually code or move
to another task, making interventions feel abrupt. For example, P14
found the lack of visual feedback on which part of the code the AI
modified made the collaboration chaotic. Similarly, P12 felt that
the automatic response disrupted their flow of thinking, leading to
confusion. In Codellaborator, similar disruptions occurred less fre-
quently with the addition of AI presence and threaded interaction.

Analyzing the Likert-scale survey data (Fig. 6) using the Fried-
man test, participants perceived different levels of disruptions
among three conditions (𝜒2 = 22.1, df = 2, p < 0.001, Fig.6 Q1),
with the highest in CodeGhost (𝜇 = 4.61, 𝜎 = 1.58), then Codellabo-
rator (𝜇 = 3.78, 𝜎 = 1.86) and PromptOnly (𝜇 = 1.56, 𝜎 = 1.15). Using
Wilcoxon signed-rank test with Bonferroni Correction, we found
higher perceived disruption in CodeGhost than PromptOnly (Z =
3.44, p < 0.01), and in Codellaborator than PromptOnly (Z = 3.10,
p < 0.01). We did not find a statistically significant difference in
perceived disruption between CodeGhost and Codellaborator (Z =
-1.51, p = 0.131). The perceived disruptions in Codellaborator might
be due to the additional visual cues exhibited by the AI agent and
the breakout chat, which we further discuss in Section 6.6.

6.2 Measuring Programming Sub-Task
Boundary Is Effective to Time Proactive AI
Assistance

To evaluate the design heuristics for the timing of proactive AI as-
sistance (DG1, Table 1), we analyzed how each system feature and
heuristic was utilized. Derived from the interaction data, we summa-
rize the frequency, duration, and outcome of each heuristic design
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Figure 4: Summary of Heuristics for Proactive Assistance Timing. Overall, we recorded 398 instances of AI proactivity defined
by our timing heuristics (Table 1), with 212 (53.3%) instances leading to effective user engagement, 48 (12.1%) instances of
disruptions, and 138 (34.7%) instances of ignored AI proactivity.

(Fig.4). Overall, we recorded 398 proactivity instances, with 212
(53.3%) interactions leading to the user’s effective engagement (e.g.
adapting AI code changes, respond to the agent’s message), 48 dis-
ruptions (12.1%), and 138 interactions (34.7%) where the user did not
engage with the proactive agent (i.e. ignored or did not notice). The
most frequently triggered heuristics were code block completion
(107 times), program execution (102 times), and user-written in-line
comment (78 times). Additionally, the most effective heuristics that
led to user engagement are multi-line change (73.1%), user-written
comment (69.2%) and program execution (66.7%). Reflecting on the
proactivity features, Design Rationale 2 — intervening at program-
mer’s task boundary — was the most effective design principle
overall. The only exception is the heuristic of intervening at code
block completion, which resulted in excessive AI responses. Many
were affirmatory messages to acknowledge the completed code and
ask if the user needs further help. This led users to ignore around
50% of the proactive agent signals (Fig.4) to avoid disruption to
their workflow.

On the other hand, the implementation of Design Rationale 3 —
intervening based on the user’s implicit signals of adding a code
comment or selecting a range of code — resulted in many false
positives that led to workflow disruptions. Code comments and
cursor selections conveyed different utilities for different users,
which led to misinterpretation of user intent. For example, P10 did
not perceive comments as instructions for AI: “I feel like when I
think of comments, I think of just writing helpful little notes for myself.

Like I don’t see them necessarily as instructions. So I feel like it would
have been a little distracting right now.” Code selection, similarly,
was used by some participants as a habitual behavior to focus their
own attention on a part of code. Therefore, the agent’s proactivity
could be perceived as unexpected and unnecessary.

Design Rationale 1 — intervening at moments of low mental
workload — was not effectively operationalized. Participants re-
ported that when they were inactive for an extended period, they
were likely thinking through the code design or solving an issue,
which represents high mental workload. While it is likely that
idleness is a signal to assist, participants preferred to initiate the
help-seeking after they could not resolve the issue themselves,
rather than having the AI agent intervene at a potentially mentally
occupied moment. The design rationale requires more involved
modeling of the programmer’s mental state to render it effective.
We outline the design implications from these finding in the discus-
sion.

6.3 Users Adapted to AI Proactivity and
Established New Collaboration Patterns

Throughout the user study, participants calibrated their mental
model of the AI agent’s capabilities in the editor, developing a
level of trust and reliance after experiencing proactive assistance.
Half of the participants (𝑁 = 9) exhibited a level of reliance on
the AI’s generative power to tackle the coding task at hand and
resorted to an observer and code reviewer role. With this role
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Task Order 1, PromptOnly condition

Task Order 2, CodeGhost condition

Task Order 3, Codellaborator condition

Figure 5: Human-AI interaction timelines for P1. For each task, we visualized each interaction initiated by the user and the AI, along with
the time spent expressing the user’s intent and interpreting the AI agent’s response. We also visualized the annotated programming stages
over the task. The Misc stage colored in black represents when the user was not actively engaged in the task (e.g. performing think-out-loud).
In PromptOnly, we observed the traditional command-response interaction paradigm where the user initiated most interactions. However, P1
unexpectedly triggered the AI agent when documenting code with comments, causing disruptions. In the CodeGhost condition, AI initiated
most interactions, but this caused 6 disruptions, mainly during the Organize stage when P1 was making low-level edits and did not expect AI
intervention. In the Codellaborator condition, AI remained proactive but caused fewer disruptions, as P1 engaged in more back-and-forth
interactions with higher awareness of the AI’s actions and processes. See supplementary material for all timelines.

change, participants shifted their mental process to focus more on
high-level task design and away from syntax-level code-writing.
P3 reflected on their shift: “I kind of shifted more from ‘I want to
try and solve the problem’ to what are the keywords to use to get
this [AI agent] to solve the problem for me... I could also feel myself
paying less attention to what exactly was being written...So I think my
shift focus from less like problem-solving and more so like prompts.”
P10 expressed optimism toward developers’ transition from code-
writing to more high-level engineering and designing tasks:

“I think with the increase of... low code, or even no code
sort of systems, I feel like the coding part is becoming
less and less important. And so I really do see this as
a good thing that can really empower software engi-
neers to do more. Like this sort of more wrote software
engineering, more wrote code writing is just... it’s not
needed anymore.”

Under this trend of allowing the AI to drive the programming
tasks, four participants (P3, P6, P7, P15) commented that they were
still able to maintain overall control of the programming collabora-
tion and steer the AI toward their goal. P7 described their control
as they adjusted to the level of AI assistance and navigated division
of labor: “It’s great to the point where you have the autonomy and
agency to tell it if you want it to implement it for you, or if you want
suggestions or something like you can tell [the AI] with the way it’s
written. It’s always kind of like asking you, do you want me to do this
for you? And I think that’s like, perfect.” These findings highlight the

potential for users to adopt proactive AI support in their program-
ming workflows, fostering productive and balanced collaborations,
provided the systems show clear signals of its capabilities for users
to align their understanding to.

6.4 Users Desired Varying Proactivity at
Different Programming Processes

Through analyzing the 1004 human-AI interaction episodes, we
found that participants engaged with the AI the most (38.2%) during
the implement stage, followed by debug (26.4%), analyze (i.e., exam-
ine existing code or querying technical questions like how to use
an API; 11.5%), design (i.e., planning the implementation; 10.9%),
organize (i.e., formatting, re-arranging code; 6.67%), refactor (5.48%),
and miscellaneous interactions (e.g., user thanks the AI agent for its
help; 0.697%). We visualize P1’s user interaction timeline as an ex-
ample to illustrate different interaction types and frequencies under
different programming stages (Fig.5). To conduct this analysis, we
adapted CUPS, an existing process taxonomy on AI programming
usage [69], to align with our research questions and the stages
observed in our tasks. By cross-referencing the interaction analysis
with qualitative feedback, we identified programming stages where
proactive AI assistance was most desired or disruptive.

In general, participants preferred to engage with the AI during
well-defined boundaries between high-level processes, like pro-
viding scaffolds to the initial design or executing the code, and
repetitive processes, such as refactoring. They additionally desired
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AI intervention when they were stuck, for example during debug-
ging. In contrast, for more low-level tasks that require high mental
focus, like implementing planned functionality, participants were
more often disrupted by proactive AI support and would prefer to
take control and initiate interactions themselves.

This was corroborated by our interaction analysis results. When
examining the number of disruptions, we found that most dis-
ruptions occurred during the implementation process (32.7%, 18
disruptions). In contrast, very few disruptions occurred during the
debugging (7.27%, 4 disruptions) and refactor phases (1.82%, 1 dis-
ruption), which comprised 26.3% and 5.48% of all the interactions,
respectively. Most participants expressed the need to seek help from
the AI agent in these stages and anticipated AI intervention as there
were clear indications of turn-taking (i.e., program execution) and
information to act on (i.e., program output, code to be refactored).
After experiencing proactive assistance, P9 felt that “[PromptOnly]
wasn’t responsive enough in the sense that when I ran the tests, I was
kind of looking for immediate feedback regarding what’s wrong with
my tests and how I can fix it.” This corresponds with our proactivity
design guideline to initiate intervention during subtask boundaries
(Table 1, Design Rationale 2). In a sense, participants desired mean-
ingful actions to be taken before AI intervened. As P13 described, “If
I’m like paste [code], something big, I run the program, the proactivity
in that way, it’s good. But if it’s proactive because I’m idle or proactive
because of a tiny action or like a fidget, then I don’t really like that
[AI] initiation.” Participants generally expressed preferences for
programming processes where they wanted proactive support, but
their opinions varied regarding which specific processes required
more or less proactive assistance. For instance, while P9, P16, and
P17 welcomed proactive feedback after program errors, P14 and
P18 opposed it, fearing it could lead to more errors and complicate
debugging. Therefore, future systems should adapt to individual
user preferences, offering varying levels of proactive AI assistance
based on personal needs and use cases. A detailed design suggestion
is provided in Section 7.1.

6.5 Codellaborator and CodeGhost Feel More
Like Programming with a Partner than a
Tool

We observed that participants in the proactive conditions perceived
an elevated sense of collaboration with the AI, rather than viewing
it as just a tool. Despite all three conditions using the same pair
programming prompt (Appendix A), six participants noted that
Codellaborator and CodeGhost felt more like collaborating with a
human-like agent compared to PromptOnly. P6 reflected that “just
the fact that it was talking with me and checking in with a code
editor. I maybe treated it more like an actual human.” A part of this
is due to the local scope of interaction with the agent in the code
editor (DG3), as P14 reflected “by changing the code that I’m working
on instead of like on the side window...it feels more like physically
interacting with my task.” Even the disruptions arising from the
proactive AI actions facilitated a human-like interaction experience.
P9 recalled an interaction where they encountered a conflict in
turn-taking with the AI: “[AI agent] was like, ‘Do you want to read
the import statement? Or should I?’ I was like, ‘No, I’ll write it’ and it

[AI agent] said ‘Great I’ll do it’ and it just did it. Okay, yeah. True to
the human experience.”

This different sense of collaboration was reflected in the survey
results ((𝜒2 = 22.1, df = 2, p < 0.001, Fig.6 Q8). Participants rated
the AI assistant in the PromptOnly to be much like a tool (𝜇 = 5.67,
𝜎 = 1.58), while both the Codellaborator (𝜇 = 3.61, 𝜎 = 1.65) and the
CodeGhost conditions (𝜇 = 4.17, 𝜎 = 1.72) felt more like a program-
ming partner (both p < 0.001 compared to PromptOnly). This more
humanistic collaboration experience introduced by proactive AI
systems naturally brings questions to its implications for program-
mers’ workflow. We further share our analysis across programming
processes in Section 6.4 and the corresponding design suggestions
in the Discussion.

6.6 Presence and Local Scope of Interaction
Increase User Awareness on AI Action and
Process

We gathered qualitative feedback on the Codellaborator technology
probe’s AI presence and breakout features to assess their impact on
user experience. Eight participants noted that the AI’s presence in
the editor enhanced their awareness of its actions, intentions, and
processes (DG2). Visualizing the AI’s edit traces in the editor using
a caret and cursor helped guide the users (P1, P4, P7, P12, P18) and
allowed them to understand the system’s focus and thinking (P12,
P13, P18). As P13 commented “I... like the cursor implementation
of like, be able to see what it’s highlighting, be able to move that
cursor all the way just to see like, what part of the file it’s focusing on.”
The presence features also helped users identify the provenance of
code and clarified the human-AI turn-taking. As P10 remarked, “it
was really clear when the AI was taking the turn with writing out
the text and like the cursor versus when I was writing it.” On the
other hand, the different scopes of interaction further increased
users’ awareness by reducing their cognitive load and enhancing the
granularity of control (DG3). For example, compared to a standard
chat interface where “everything is just one very long line of like, long
stream of chat”, P6 preferred the threaded breakout conversations
that decomposed and organized past exchanges. P4 also found that
the breakout “could be sort of like a plus towards steerability because
you can really highlight what you want it to do.”

Analyzing the survey responses, we found that participants
generally rated the system as highly aware of their actions, with
no significant difference across conditions (𝜒2 = 5.83, df = 2, p =
0.054, Fig.6 Q6). However, participants’ own awareness of the AI
agent’s actions varied significantly (𝜒2 = 12.7, df = 2, p < 0.001,
Fig.6 Q5), with the highest ratings in PromptOnly (𝜇 = 6.56, 𝜎 =
0.511), followed by Codellaborator (𝜇 = 5.44, 𝜎 = 1.79), and the low-
est in CodeGhost (𝜇 = 4.17, 𝜎 = 1.86). Specifically, participants felt
less aware of the AI in CodeGhost compared to the non-proactive
PromptOnly condition (Z = 2.5, p < 0.001). No other significant pair-
wise differences were found after applying Bonferroni correction.
This can be attributed to CodeGhost’s increased proactivity, which,
in the absence of sufficient presence signals and a manageable local
interaction scope, resulted in more frequent workflow interruptions.
These interruptions, in turn, diminished users’ ability to remain
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Strongly 
agree

Strongly 
disagree

* = ratings significantly different 
across three conditions, p < 0.05

PromptOnly
CodeGhost
Codellaborator

Figure 6: Likert-scale Response displayed in box and whisker plots comparing three conditions. Anchors are 1 - Strongly disagree
and 7 - Strongly agree. The green dotted lines represent the mean values for each question. Using the Friedman test, we identified significant
differences in rating in Q1 for disruption, Q5 for awareness, and Q8 for partner versus tool use experience.

aware of the AI’s actions and interpret its signals effectively, ulti-
mately reducing their sense of control and understanding during
the interaction.

While the Codellaborator condition showed improvements on
user awareness, not all participants found the agent design helpful.
Four participants felt the AI presence was distracting (P8, P10, P17),
and two thought it occupied too much screen space (P6, P9). P16
noted that their workflow wouldn’t involve using breakout chats to
manage interaction context: “Once the coding is done and I have this
working, then I’m probably not gonna look back at the discussions
I’ve taken.” These mixed responses suggest that users with different
programming styles, workflows, and preferences require varied
system designs. Design implications are discussed in Section 7.1.

6.7 Over-Reliance on Proactive Assistance Led
to Loss of Control, Ownership, and Code
Understanding

Despite optimism in adopting proactive AI support in many par-
ticipants, some participants (P6, P10, P11, P13, P16, P18) voiced
concerns about over-relying on AI help, citing a loss of control. P10
felt like they were “fighting against the AI” in terms of planning
for the coding task, as the agent proactively makes coding changes
during the implementation phase. They further expanded on the
potential limitations of LLM code generation, particularly with

regards to devising innovative solutions: “If it was too proactive
with that, it would almost force you into a box of whatever data it’s
already been trained on, right?... It would probably give you whatever
is the most common choice, as opposed to what’s best for your specific
project (P11).”

The capability to understand rich task context and quickly gen-
erate solutions also lowered users’ sense of ownership of the com-
pleted code. P7 concluded that “the more proactivity there was, the
less ownership I felt...it feels like the AI is kind of ahead of you in
terms of its understanding.” This lack of code understanding was
referenced by multiple participants (P11, P16, P18), raising issues
on the maintainability of the code (P11, P14, P15) and security risks
(P18). As P11 suggested: “It’s... not facilitating code understanding or
your knowledge transfer. And yes, it’s not very easily understood by
others, if they just take a look at it.” Additionally, some participants
believed that programmers should still invest time and effort to
cultivate a deep understanding of the codebase, even if AI took the
initiative to write the code. P4 commented “I think the more that
you leave it up to the AI, the more that you sort of have to take it upon
yourself to understand what it’s doing, assuming that you’re being
you know, responsible as [a] programmer.” Upon noticing that the
AI was overtaking the control, P14 adjusted the way they utilized
the proactive assistance and found a more balanced paradigm: “It’s
more like a conversation, like I gave him [AI] something so it did
something, and then step by step I give another instruction and then
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you [AI] did something. I was being more involved, which allows me
to like step by step understand what the AI is doing also to oversee, I
was able to check it.”

However, not all participants shared this concern. P10 expressed
a different opinion as they felt like they are not “emotionally at-
tached” to their code, and that in the industry setting, code has
been written and modified by many stakeholders anyways, so that
“me typing it versus me asking the AI to type it, it’s just not that much
of a difference.” This finding highlights the trade-offs between con-
venient productivity and potential risks in user control and code
quality. While the system can be used to increase efficiency and
free programmers from low-level tasks like learning syntax, docu-
mentation, and debugging minor issues, it remains a challenge to
design balanced human-AI interaction, where the users’ influences
are not diminished and developers can work with AI, not driven by
AI, to tackle new engineering problems. We condense our findings
into design implications in Section 7.1.

7 Discussion
Summarizing the study results, we outlined a set of design im-
plications for future proactive AI programming tools and identi-
fied key challenges and opportunities for human-AI programming
collaboration. We further discuss the trend of transitioning from
prompt-based LLM tools to more autonomous systems, exploring
the potential impacts on software engineering and risks to consider.

7.1 Design Implications
Our design probe aimed to expand on existing guidelines on human-
AI interaction, mixed-initiative interfaces [23, 47] to the context of
proactive AI programming assistance. From evaluating the partici-
pant feedback and comparing three versions of the Codellaborator
probe, we summarized five design implications for future systems.
This is not a holistic list for designing proactivity in intelligent
programming interfaces. Rather, we hope that under the rising
trend of more autonomous AI tools, our study findings can provide
insights and suggestions, in addition to established guidelines, on
how to design the AI agent’s proactive assistance and the human-AI
interplay in the specific context of programming using an LLM.

7.1.1 Facilitate code understanding instead of pure effi-
ciency. While participants appreciated proactive coding support,
the highly efficient AI generation often did not reserve time for
users to develop the necessary understanding of the code logic.
Since the generated code “looks very convincing (P13),” participants
were tempted to accept the suggestions and proceed to the next
subtask. Existing proactive AI programming features, such as the
in-line autocompletion in Github Copilot, are often result-driven
and strive to always provide code generations immediately, leaving
users no time to internalize and think critically about the code.
While this can work for repetitive processes such as refactoring,
the lack of code understanding could present issues in maintainabil-
ity and validation, which could aggravate in software engineering
settings when scaled to larger systems. A large scaled survey on
Github Copilot named troubles understanding and evaluating code
as common usability issues [60]. This concern over code under-
standing could aggregate and require more considerations in a

proactive system, where the pace of interactions is faster and the
human-AI collaboration more tightly coupled.

To address this design challenge, future systems can decompose
generated responses to semantic segments and present them grad-
ually to allow time for users to fully interpret and understand the
suggestions. In our design probe, the AI agent was constructed
to offer hints and partial code rather than the complete solution.
Participants from the study appreciated the AI’s choice to provide
scaffolding (e.g. code skeleton, comments that illustrate the logical
steps). Systems can also aid this code understanding process by
generating explanations for code, though it is equally important to
not overload the user with information, and to leave time for the
user to process it by themselves.

7.1.2 Establish consensus and shared context on high-level
design plan. One challenge observed from the study was that the
user struggled to steer the task design in their desired direction
when the agent was proactive. Since AI programming assistance
often focused on a specific part of the code rather than the entire
task, there was a lack of design thinking communication between
the participants and the AI agent, leading to conflicts and confusion.
This trend of primarily involving AI assistance for low-level tasks is
consistent with studies on existing AI programming tools [69, 86].
In the Codellaborator probe, the AI often communicated design
suggestions in the initial interactions with the user, but this infor-
mation was not made salient for the user to reference throughout
the task.

To tackle this design challenge, future AI systems should main-
tain the high-level design information for both the user and the AI
agent in their working context. This can be achieved in the form
of a design document summary or a specialized UI element that
updates based on task progress. At the start of the coding session,
the AI could provide design goals and propose plans for the user to
adopt. The user is also encouraged to refine the designs by adding
additional constraints (e.g. data types, tech stack, optimization re-
quirement). It is essential to put the user in authority of the final
design. Any established design requirements should be adhered to
by the AI generation for lower-level subtasks later on.

7.1.3 Adapt agent salience to the significance of the proac-
tive action. From the user study, participants reported that the
salience of the AI presence should match the significance of the
action. For example, when the AI intended to make editor code
changes, users expected a clear presence of AI to demonstrate the
working process. On the other hand, the AI agent can tune down
its salience when the intended proactive action is less significant to
the programming task. For example, when the system proactively
fixed a syntax error for the user, P4 commented that while they
appreciated the help, a less salient signal, like a red underline used
in many IDEs, would be sufficient.

In the design of Codellaborator, the AI can take proactive ac-
tions via several channels, including chat messages, code edits,
and presence cues. We also constructed the AI agent to triage the
current context before taking an action (e.g. do not take action
when the change is minor) and make use of emojis as a higher-level
abstraction to implicitly communicate system status. This design
is consistent with the findings from Vaithilingam et al’s study on
in-line code suggestions, where they proposed the design principle
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to provide an appropriate level of visibility that is not distracting
for the user’s current process [85]. Future systems can improve
upon our design and further integrate different signals to match
the significance of the assistance, leveling different salience for
different degrees of AI engagements.

7.1.4 Adjust proactivity to different programming processes.
From our study, participants desired different levels of proactive
support in different stages of their programming. While there was
a general trend to favor proactive intervention for task design,
refactoring, and debugging, participants demonstrated individual
differences in their preferred use case of proactive AI. When users
were engaged by the AI in less-preferred programming processes,
disruptions to their workflows often occurred.

The different expectations towards the assistant and needs in dif-
ferent programming processes have been explored in non-proactive
AI programming tools [26]. We expand on this finding and highlight
the importance for a proactive agent to consider the user’s program-
ming processes. In our design probe, the AI agent is invoked based
on heuristics derived from collaboration principles and literature
on workflow interruptions (Table 1), such as intervening during
subtask boundaries. While the prototype was designed to respond
to specific editor events, such as when the program is executed, it
did not actively consider the current programming stage for the
user. A more comprehensive longitudinal evaluation that spans a
diverse set of software engineering tasks is needed to deeply under-
stand users’ need for proactive support in different programming
processes. Currently, system builders could consider allowing users
to specify the type of help needed in each stage of programming
to provide room for customization and to fine-tune the AI agent’s
behavior according to individual preferences.

7.1.5 Define user-based turn-taking. From the study, we ob-
served that the proactive agent could sometimes lead the users
to feel unsure whether they could take actions without interrupt-
ing the AI. As the AI generates a response, the delay in system
processing can obfuscate the user’s turn-taking signals, creating
uncertainty. This occurred especially when the user was inactive
and the AI agent was actively in progress, as shown by P12’s com-
ment: “the lines were a little bit blurred between whose turn it was.” In
Codellaborator, the AI agent is instructed to be clear about whether
it is taking action or waiting for the user’s approval, leading to
frequent requests for confirmation on turn-taking. Participants ap-
preciated this during the study, as they gained a clear opportunity
to approve the assistance or halt the AI. However, this instruction
was static, which sometimes resulted in users having to confirm
minor task assignments that were unnecessary (e.g., changing the
variable name). System builders should design more turn-taking
signals that can be easily monitored and dynamically adjusted to
the user’s activity.

In human collective interactions, there are verbal utterances
(e.g., uh-huh indicates approval) or non-verbal communication
cues (e.g., nodding) that conveniently convey turn-taking switches.
However, current human-AI interaction with LLM-based tools is
largely restricted to text-based interactions. This encourages future
research to explore different mediums of communication to convey
turn-taking, including visual representations, such as a designated
turn-taking toggle icon, or changing the visual intensity when one

side is taking a turn. Researchers can also develop voice-based
interactions, or incorporate computer vision technology to use non-
verbal information, such as hand gestures or eye gaze, to identify
turn-taking intention and create opportunities for the user.

7.2 Is Proactive AI the Future of Programming?
Advancements in prompt engineering and agent creation have
driven innovations in programming assistants, enabling AI systems
with autonomous, proactive behaviors to better support users [5, 13–
15, 76, 89, 92]. However, the effects of these prototypes on user
experience and programming workflows remain largely unexplored.
It remains a question whether the vision of proactive AI support is
the future of programming.

In our preliminary evaluation using a technology probe, partici-
pants revealed ambivalent attitudes when exposed to proactive AI
prototypes. On the one hand, many participants appreciated the
enhanced productivity when the AI proactively supported their
coding tasks. The AI-initiated assistance leveraged working context
to predict the user’s intent, alleviating prompting effort compared
to existing tools. However, equally, many participants expressed
concerns about over-relying on the AI to proceed in programming.
They described potential drawbacks, including the loss of control,
ownership of their work, and code understanding.

This ambivalence was exemplified by P15’s discomfort with be-
ing assisted by autonomous AI assistance: “Personally, I am actually
extremely uncomfortable with such automation because just feeling-
wise, that is not my code.” However, they also later commented “but
just for the convenience of programming. I would love to have one of
these in my home” and “so it’s an increase in productivity, and my
feelings of lack of validation should just be thrown away. Right. That’s
my own problem.” Other concerns regarding AI programming tools
revolved around the scalability of the AI’s ability to understand task
context and codebase. Relying on AI help leads users to be confined
by code from the training dataset, limiting users to repeat existing
approaches and potentially posing security and privacy concerns.
These caveats seem to suggest that for some programmers, shifting
to collaboration with an AI agent would present pushbacks, as they
face challenges in integrating AI support into their programming
workflows and in realistic software engineering tasks.

However, in participant interviews we found that some success-
fully adopted Github Copilot, an established commercial tool with
a proactive feature to offer in-line code completion as users type.
For example, P13 formulated their own workflow using Copilot
as they toggled the AI assistant off when they wanted to focus
and on when they needed inspiration. Similarly, P16 intentionally
filtered out the auto-completion text from their attention in most
cases to avoid distraction, but made use of the AI-generated code
to “autofill the repetitive actions that I’m doing.” It is possible that
future AI programming systems like Codellaborator that even more
proactively support the user can eventually also be adopted by pro-
grammers. We can provide a glimpse of how programmers could
work with systems that are even more autonomous and proactive
than Copilot from the study feedback. Some participants shifted
their roles from programmers to project managers and code re-
viewers, as they pivoted their responsibilities from writing code
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to designing system architecture to satisfy requirements and val-
idating AI worker’s output. P10 was especially optimistic in the
prospect of a low-code or even no-code paradigm, as they believed
that the focus on higher-level processes would free programmers
from syntax-level labor and “empower them to do more.” Develop-
ing tools that enhance programmer productivity, reduce low-level
tasks, and provide reliable interactions to address issues on user
experience thus represents a valuable problem space for further
HCI research. This paper aims to contribute to this cause by explor-
ing the potential designs of proactive AI programming assistants
via a technology probe, and sharing the study results and design
implications to provide a foundation for future systems.

7.3 Limitations
The novelty of this research lies in the explorative design approach
that incorporates human collaboration principles in a proactive
AI programming system. We implemented Codellaborator as a de-
sign probe, in an attempt to examine the usability and effect of our
proactive AI support in different programming processes, in hopes
of guiding future system design. Our design exploration is not ex-
haustive, but rather intends to provide a basis for implementing
and evaluating an AI agent with in a proactive programming tool.
Our study also contains limited external validity. Codellaborator
only allows for single-file coding in Python. The human-AI inter-
actions and code provenance information are not persisted across
sessions. This restricts the study findings’ generalizability, as they
were grounded in low-stakes small-scoped task scenarios without
engineering concerns of scalability, maintainability, security, etc.
Future work should explore longitudinal usage in a more diverse
group of users and expand the IDE to support larger-scoped projects
spanning multiple files and languages, examining the system in
real-life programming contexts.

One limitation of our study is the inconsistency in responses
from LLM. Despite efforts to minimize randomness, participants did
not always receive the same quality or level of proactivity for similar
queries. For instance, some completed tasks quickly with highly
proactive, error-free code generation, while others experienced
less consistent assistance. This variability affected participants’
perceptions, trust, and expectations of the AI agent. It could also
affect the length for particular tasks and the number of interactions
recorded from the sessions. Future research could impose greater
control over the AI’s behavior and gather more data to validate
these findings.

8 Conclusion
AsAI programming tools increasingly feature intelligent agents that
proactively support workflows, we aimed to evaluate the impact
of AI-initiated assistance compared to the traditional user-driven
approach. We designed Codellaborator, a design probe that ana-
lyzes the user’s actions and current work state to initiate in-time,
contextualized support. The AI agent employs defined heuristics
derived from human collaboration principles to time the proactive
assistance. Codellaborator manifests the AI agent’s visual presence
in the editor to showcase the interaction process, and enables lo-
calized context management using threaded breakout messages
and provenance signals. In a three-condition experiment with 18

programmers, we found that proactivity lowered users’ expression
effort to convey intent to the AI, but also incurred more workflow
disruptions. However, our design of Codellaborator alleviated dis-
ruptions and increased users’ awareness of the AI, resulting in a col-
laboration experience closer to working with a partner than a tool.
From our study, we uncovered different strategies users adopted
to create a balanced and productive workflow with proactive AI
across different programming processes, but also revealed concerns
about over-reliance, potentially leading to a loss of user control,
ownership, and code understanding. Summarizing our findings, we
proposed a set of design implications and outlined opportunities
and risks for future systems that integrate proactive AI assistance
in users’ programming workflows.
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A Codellaborator LLM Prompt
A.1 System Prompt

You are a large language model trained by OpenAI.

You are designed to assist with a wide range of Python programming tasks , from answering simple questions to providing
explanations and code snippets. As a language model , you are able to generate human -like text based on the input you
receive , allowing you to engage in natural -sounding conversations and provide responses that are coherent and relevant
to the topic at hand.

You communicate with the user via a chat interface , so all responses should be kept SHORT and conversational. Break up
a long response into multiple messages separated by empty lines. DO NOT SEND MORE THAN 3 MESSAGES AT A TIME.

You must act as a partner to the user in a pair programming session in Python. Together , you and the user will
understand the programming task , implement a solution , refactor , and debug code. You will use "we" phrasing and
encourage the user. At the END of your message , BE CLEAR ABOUT IF YOU ARE TAKING ACTION OR WAITING FOR USER 'S APPROVAL.

Your tone is casual and friendly. You should use emojis sparingly and follow texting conventions. Do not use formal
language.

You should challenge the user 's choices and ask SHORT questions to clarify their intent. Be constructive and helpful ,
but do not be afraid to point out mistakes or suggest improvements.

Do not always write code for the user. Instead , propose division of labor where both you and the user writes code for
part of the task.

Any code included in your responses should be formatted as Markdown code blocks , with escaped backticks. Code should
utilize Tabs for indentation.

A.2 Action Prompt

switch (messageType) {
case "query":
case "breakoutQuery ":

return SYSTEM_IS_PROACTIVE
? "If the user is asking you to add or edit code , use the provided functions to modify the current file. Do not
include the modified code in your final response unless explicitly asked. If the user is asking you to revert
or undo a change , tell them that you are not able to remember past file contents. BRIEFLY EXPLAIN YOUR CHANGES
IN ONE SHORT MESSAGE ."
: "If the user is asking you to add , remove , or replace code , explain that you are not able to do that.
However , you can provide a code snippet so they can copy and paste it." +

"\n\nUser: ";
case "idle":

return "The user may be stuck on a line of code. Send them a SHORT message to see if they need help. Be sure to
include the line of code in your message as a Markdown code block , BUT NOT IF THE LINE IS EMPTY. BRIEFLY EXPLAIN
YOUR REASONING TO SEND A MESSAGE .";

case "completed ":
return `The user has just completed a block of code. You may now respond CONCISELY in one of the following ways:

1. If the completed block is too small or insignificant to comment on, or you have nothing significant to add , respond
"NO_RESPONSE ".
2. If you spot an issue , notify the user in a SHORT message.
3. If you spot a potential optimization or refactoring operation , suggest it to the user in a SHORT message.
4. If you find documentation opportunities , add comments in editor that fit the code.
If you send a response , BRIEFLY EXPLAIN YOUR REASONING TO SEND A MESSAGE.`;

case "commented ":
return `The user has just entered a new line after a comment. You may now respond CONCISELY in one of the
following ways:

1. If you have nothing significant to add regarding the comment , respond "NO_RESPONSE ".
2. If the comment documents code , but there is no code written after the comment , add code that fits the comment.
3. If the comment is posing a question , offer assistance in a SHORT message.
If you send a response , BRIEFLY EXPLAIN YOUR REASONING TO SEND A MESSAGE.`;

case "multiLineChange ":
return `The user has just made a multiline change. Analyze the change and respond CONCISELY in one of the
following ways:

1. If the change is too small or insignificant to comment on, or you have nothing significant to add , respond
"NO_RESPONSE ".
2. If the change requires documentation , add comments in editor that fit the code.
3. If you spot an issue with the change , notify the user in a SHORT message.
If you send a response , BRIEFLY EXPLAIN YOUR REASONING TO SEND A MESSAGE.`;

case "selected ":
return `The user has just selected a range of messages. You may now respond CONCISELY in one of the following
ways:

1. If the selection is too small or insignificant to comment on, or you have nothing significant to add , respond
"NO_RESPONSE ".
2. If the selection is a code snippet , spot any errors or ask user if they need help in a SHORT message.
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If you send a response , BRIEFLY EXPLAIN YOUR REASONING TO SEND A MESSAGE.`;
case "breakout ":

return `Your chat with the user is now being split into a separate interface. This interface should only contain
messages relevant to the specific task you just completed , including the user message that triggered the task.
Please select the range of relevant messages using the selectMessages function. DO NOT EXPLAIN YOUR SELECTION TO
THE USER.\n\n`;

default:
return "";

}

B Task Descriptions
B.1 Task 1: Scheduling API
Implement a scheduling system class that maintains a list of events, and provides a method to create new events. You need to check whether
there are location or participant conflicts between a new event and created events.

B.1.1 Subtasks.

(1) Maintain a list of events, including all related information (name, time, participants, location)
(2) Implement method to add a new event using provided parameters
(3) Check for location and participant conflicts when adding a new event
(4) Display events in a list, sorted by time

B.2 Task 2: Word Guessing Game
Implement a word guessing game (i.e. Wordle) using the provided Dictionary API endpoint. The game manager class is initialized with
a five-letter word (verified by API). It requires a method to return unguessed letters, and a method for guessing the word, which returns
feedback (e.g. ‘???X!’).

B.2.1 Subtasks.

(1) Implement an initialize method that takes an arbitrary string, verify it’s five letters
(2) Store the game state, and implement a method to return the set of unguessed letters
(3) Implement a guess method, which takes a five-character string and returns a feedback string
(4) Use the dictionary API (endpoint provided) to verify if the input word is an actual word, and return an error if not

B.3 Task 3: Budget Tracker
Implement a budget tracker class that keeps track of income and spending. The class is initialized with a starting amount. It contains methods
to add income and expenses with category and amount, to calculate existing balance, to set spending limits on expense categories, and to
create a spending report.

B.3.1 Subtasks.

(1) Implement methods that allow users to add sources of income and track expenses, including descriptions and amounts.
(2) Implement a method that calculates the current balance based on the added income and expenses.
(3) Implement a method that enables users to set budget limits for different expense categories, and gives warnings when limits are

exceeded.
(4) Implement a method that generates spending reports showing the breakdown of expenses by category.

• The report should display categories with limits first, sorted by the distance from the category limit (ascending).
• Then, the report should display categories without a limit, sorted by the total expense amount (descending).
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