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Abstract

Wearable AI systems aim to provide timely assistance in daily life,
but existing approaches often rely on user initiation or predefined
task knowledge, neglecting users’ current mental states. We intro-
duce ProMemAssist, a smart glasses system that models a user’s
working memory (WM) in real-time using multi-modal sensor sig-
nals. Grounded in cognitive theories of WM, our system represents
perceived information as memory items and episodes with encod-
ing mechanisms, such as displacement and interference. This WM
model informs a timing predictor that balances the value of assis-
tance with the cost of interruption. In a user study with 12 partic-
ipants completing cognitively demanding tasks, ProMemAssist
delivered more selective assistance and received higher engagement
compared to an LLM baseline system. Qualitative feedback high-
lights the benefits of WM modeling for nuanced, context-sensitive
support, offering design implications for more attentive and user-
aware proactive agents.
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1 Introduction

Context-aware wearable AI devices such as smart glasses [4], neck-
laces [2], and pins [3] are beginning to reshape how intelligent
assistants support users in daily life. Their hands-free, always-on
form factor enables access to real-time sensor data and provides
the opportunity to proactively assist users in dynamic, situated
contexts — from cooking and organizing to planning or navigating
physical spaces [7, 13, 18]. As these systems move beyond desk-
top and mobile environments, a central challenge emerges: when
should they step in to help?

Many existing assistants rely on user-initiated interaction, such
as voice commands or manual input. While effective in many con-
texts, this model assumes that users are aware of what help is
possible and cognitively available to ask for it. However, in every-
day tasks, users are often mentally occupied or physically engaged,
making it difficult to initiate help-seeking even when assistance
would be beneficial. More critically, users may not recognize when
support is relevant — or may simply forget to ask.

Recent works in proactive assistants attempt to address this issue
by triggering assistance based on task context or rule-based heuris-
tics [7, 29, 36, 40, 73]. For example, systems like PrISM-Observer
[7] and Satori [36] leverage task step detection or inferred user
goals to display timely instructions or reminders. However, these
strategies often rely on predefined task structures or heuristic-based
triggers. They are limited in their ability to account for internal
mental states, such as attention, focus, or cognitive load, which
play a critical role in determining whether a user is ready or recep-
tive to assistance. Without such awareness, proactive support risks
becoming mistimed, disruptive, or even ignored.

In this paper, we propose a novel approach to inform the timing
of assistance: modeling the user’s working memory (WM) as a lens
into their mental availability and the assistance’s value. WM is a
cognitive system responsible for temporarily holding and manipu-
lating information during task performance [8, 16, 22]. By modeling
the contents and constraints of WM — including capacity limits,
recency of information, and susceptibility to interference — we
can better infer moments when users are more cognitively open to
external input, and conversely, when interruptions may be costly.

We introduce ProMemAssist, a smart glasses system that lever-
ages multi-modal sensor signals (camera and microphone) to con-
struct a real-time model of a user’s working memory. The system
encodes visuospatial and phonological memory items from the
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environment and binds them into episodic chunks that represent
meaningful task contexts [8, 22, 48]. A timing predictor uses this
WMmodel to evaluate the potential value of assistance and the cog-
nitive cost of interruption, selecting moments when support is most
likely to be helpful and least disruptive. Assistance is generated
using a large language model (LLM) based on current memory state.
The focus of our work is on when assistance should be delivered,
rather than what assistance to provide. As such, our system does
not aim to optimize goal inference and the content of assistance
beyond what can be reasonably inferred from the current working
memory state.

To evaluate our approach, we conducted a within-subject user
study with 12 participants performing real-world tasks that demand
both physical interaction and cognitive engagement. Participants
completed four tasks (e.g., setting up a dining table, packing for a
trip) while receiving assistance either from ProMemAssist or a
baseline system where an LLM agent with similar system prompts
dictated the timing and generation of support based on the same
environmental information. Our findings show that ProMemAs-
sist delivered assistance more selectively depending on the user’s
WM model, with richer positive engagement and fewer negative
reactions.

This paper makes the following contributions:
• A novel working memory modeling framework for deter-
mining opportune moments to deliver proactive assistance
on wearable devices;

• A proactive timing prediction approach that balances the
value and cost of assistance based on cognitive state;

• A user study demonstrating that WM-informed timing leads
to improved user experience and engagement.

2 Related Work

2.1 Wearable Device for Task Assistance

Advancements in sensing and lightweight computing devices have
led to novel wearable assistants in consumer and research fields
alike. LLM-enabled commercial products like Ray-ban glasses [4],
AI pin [3], and AI friend necklace [2] produce a plethora of pos-
sibilities and controversies regarding how technologies can assist
or disrupt people’s daily lives. Recent research work has demon-
strated the potential of wearable and situated agents to support
users in physical environments by leveraging multi-modal input
streams and AI models. For example, Arakawa et al. utilized smart
watch sensing and task step modeling to predict the user’s progress
and provide just-in-time interventions [7] and even answer voice
queries [6]. Another work, OmniActions, predicts digital follow-up
actions, such as looking up information or sharing captured images,
based on real-world multi-modal signals using LLMs [37].

In VR/AR environements, works like AMMA adapt task guidance
interfaces by modeling user state and planning adaptive step-by-
step support [73]. AdapTutAR presents in-situ task guidance by
detecting user behavior through AR glasses [30]. Another work,
Satori, forecasts the user’s task actions by modeling their inten-
tion and present assistance in AR [36]. These systems illustrate
progress in translating ambient perception into user task under-
standing and actionable system guidance. Our work differs from
these systems by focusing on constructing a model of the user’s

cognitive state, specifically working memory (WM), rather than
inferring perceptibility based on external environmental or task
cues. Unlike proactive support that relies on observed task progress
or heuristics, we introduce a timing predictor informed by cognitive
modeling, enabling interventions that are responsive to mental load
and availability.

2.2 Memory Augmentation and Modeling

Memory augmentation has long been a research goal in ubiqui-
tous and wearable computing. Early visionaries like Lamming and
Rhodes imagined memory prostheses that could recall contextually
relevant past information [33, 61]. More recent work such as Sense-
Cam diaries [34], MemoriQA [66], and OmniQuery [38] support
retrospective access to personal memory for tasks like informa-
tion storage, question-answering, and life-logging [26]. In addition,
many works augment user’s capabilities to recall information. For
example, Memoro offers lightweight real-time augmentation with
mixed-initiative memory aid [74], and Shen et al. constructed a
VLM-based memory augmentation agent for episodic memory re-
call tasks [63]. Another tool, AiGet, uses sensing data from AR
glasses to construct knowledge library of the user’s daily life to
provide proactive interventions [17]. Moreover, prior work in XR
memory systems explores how immersive technologies can exter-
nalize memory to improve recall and reduce load [15, 42]

While these systems primarily focus on retrieval support,
ProMemAssist addresses a complementary but underexplored de-
sign space: timing real-time proactive support to align with ongoing
mental processes. We argue that effective memory augmentation
should not only improve recall but also account for the user’s cog-
nitive readiness in the moment. Our approach is partially grounded
in the Cognitive Load Theory [64], which puts mental workload as
a key consideration for interaction and proposes that the timing
and modality of intervention could impact user mental workload
and receptivity.

One approach to address cognitive receptivity is through physi-
ological sensing. For example, Sarker et al. developed a machine
learning model to assess user availability for just-in-time interven-
tions based on wearable sensor data (ECG, accelerometer, respi-
ration) and reported over 74% accuracy in natural environments
[62]. Similarly, Chan et al. introduced Prompto, a memory training
assistant that initiates prompts when electrodermal activity (EDA)
and heart-rate variability (HRV) signals suggest the user is under
low cognitive load [19]. By contrast, ProMemAssist infers cog-
nitive availability by constructing mental workload model using
observable environmental cues (e.g., visual and auditory signals)
rather than physiological signals. While physiological sensing pro-
vides fine-grained access to internal states, it can be intrusive, less
interpretable, and harder to generalize across users. ProMemAssist
offers a more lightweight, explainable model for attention dynamics
based on working memory constructs (e.g., recency, interference),
and complements prior work by providing an alternative path to
cognitively aligned assistance.

Another major application for memory modeling is to simulate
and predict user goals or attention via memory modeling [9–11,
32, 51, 67], but few systems have attempted to model the working
memory explicitly for timing decisions. MATCHS, for example, uses
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WM simulation to adapt interface difficulty for older users or those
with cognitive impairments [43, 44], but does not guide assistance
delivery timing.

Our contribution is not to offer a definitive cognitive model that
can predict user needs and behaviors, but to explore how light-
weight WM modeling can inform system timing in interaction.
This offers a new mechanism for designing more attentive and per-
sonalized just-in-time assistants, particularly in AR and wearable
contexts where attention and cognitive load are highly volatile.

2.3 Timing of Service and Interruptibility

A central challenge in mixed-initiative systems is knowing when
to assist [5, 27]. Well-timed assistance can ease cognitive effort,
avoid confusion, and even foster incidental learning about the sys-
tem’s capabilities [1, 27, 45]. In contrast, poorly timed interventions
may negatively impact users’ memory, emotional well-being, and
ongoing task execution [12, 23, 28].

Past systems have explored timing proactive assistance bymodel-
ing user behavior and task states [18, 21, 40, 55, 56]. Additionally, re-
search on notification timing has shown that context-based deferral
can improve user experience [20, 39]. Efforts to model interruption
cost have led to systems that predict notification acceptability [47]
or adapt service robot initiative [13, 52]. While these approaches
often use task context, heuristics, or rule-based timing triggers and
interruption measurement, ProMemAssist models WM mecha-
nisms such as internal cognitive interference and recency decay,
offering a structured basis for timing decisions grounded in WM
theory.

The literature also highlights trade-offs in proactivity design.
For example, overly proactive agents may be perceived as intrusive,
while reactive ones risk missing key support opportunities [51,
71]. By modeling memory state, we aim to strike a more nuanced
balance between providing the benefit of intervention and the cost
of disruption.

3 Design Rationale

To deliver timely support in dynamic, real-world tasks, proactive
assistants must consider not just the external environment but also
the user’s internal cognitive state [5]. From a user-centered perspec-
tive, the optimal moment to provide assistance depends on multiple
overlapping factors: (1) the user’s current mental context—what
they know, what they’re trying to do, and what might require sup-
port; (2) their attentional focus—what modality or channel they are
currently engaged with; and (3) their cognitive availability—how
much capacity remains to accommodate new input without induc-
ing overload or disruption.

To capture these factors in a unified framework, we adopt a
working memory (WM) model inspired by cognitive psychology
and neuroscience [8, 22, 48]. Working memory is a lightweight and
transient system responsible for maintaining and manipulating in-
formation over short time periods. It has several properties directly
relevant to assistance timing—such as capacity limitations, decay
over time, and competition between concurrent mental representa-
tions [16, 50]. Critically, WM reflects the user’s immediate mental
state—what they are actively attending to—making it particularly
well-suited for predicting receptiveness to new information.

Unlike long-term user modeling or task-based heuristics, WM-
based modeling focuses on what is mentally available right now.
It allows the system to reason about real-time dynamics—what
information is currently being held, how fresh or relevant it is, and
whether new input would support or interfere with existing cogni-
tive processes. Our model draws on classic tripartite WM theories
that include visuospatial, phonological, and episodic components
[8, 72], and computational frameworks that simulate memory en-
coding, rehearsal, and interference.

This approach enables assistance to be grounded in the structure
of ongoing mental activity—moving beyond surface behavior or
static context to support proactive timing that is both informed and
adaptive.

3.1 Design Goals

To implement this framework, we articulate three system-level
goals that shaped the design of ProMemAssist:

• DG1: Facilitate Real-Time WM Modeling. The system
should continuously model the user’s working memory in
near real-time to support fine-grained reasoning about when
assistance is needed and how cognitively costly it might
be. This includes maintaining up-to-date representations
of memory items, their recency, modality, and relevance to
ongoing context. This design goal stems from the temporal
nature of WM, which decays over a short time and demands
frequent updates [8, 60].

• DG2: Utilize Observable and Multi-modal Inputs. The
WM model should be grounded in signals that are practi-
cally obtainable in everyday settings. We focus on visual
and auditory information, aligning with the visuospatial
and phonological stores of WM theory. By using wearable-
friendly modalities such as video and audio, we ensure that
the system approach remains deployable and applicable to
other wearable devices.

• DG3: Enable Cognitive-Informed Timing Decisions.

The WM model should support principled reasoning about
when assistance should be delivered, deferred, or withheld.
To do this, it should computationally process WM properties
and mechanisms—such as memory encoding, decay, and
interference —that reflect the user’s current mental state.
These processes provide a structured basis for predicting
the cognitive impact of potential interruptions and guiding
assistance timing in away that is both adaptive and grounded
in WM theory.

4 ProMemAssist

ProMemAssist constructs a real-time WM representation using
a pair of smart glasses with camera and microphone and compu-
tationally models memory mechanisms to predict the value and
cost of potential proactive assistance. Below we illustrate the sys-
tem workflow with a user scenario walkthrough and detail the
implementation.

4.1 User Scenario Walkthrough

Alex wears his smart glasses every day, relying on the onboard
assistant to provide timely support for his everyday tasks. Today,
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Figure 1: ProMemAssist Workflow. A○: Multimodal sensor input (visual and auditory) is captured from smart glasses. B○: Perception
memory encodes visual-spatial (e.g., “forks, bottle, banana”) and phonological (e.g., “There’s gonna be four of us for dinner”) signals, which
are summarized into an episodic buffer describing the current task context. C○: The assistance generator uses the working memory state to
produce candidate messages. D○: The timing predictor evaluates each message based on its predicted relevance and importance, as well as
the cost of displacing existing memory or causing interference. E○: Messages with high predicted utility are delivered as proactive voice
assistance, while F○ lower-utility messages may be deferred for later evaluation or discarded.

Alex is setting up a dining table to welcome guests for dinner. As he
moves through the room, the glasses passively capture his egocen-
tric visual field and surrounding conversations through the built-in
camera and microphone. Without any explicit input, ProMemAs-
sist continuouslymodels his real-timeworkingmemory state based
on what he sees, hears, and interacts with (Fig.1.A).

As Alex begins by placing plates, cups, and cutlery on the table,
the system encodes these visual signals into WM as memory items.
When he places a coffee cup next to a spoon and hears someone
say, “There’s gonna be four of us for dinner,” ProMemAssist binds
this input into a coherent episodic chunk labeled “The user is setting
up a dinner table with guests.” This episodic context is shown in
Figure 1.B, where both visual (forks, bottle, banana...) and phono-
logical (“There’s gonna be four of us for dinner. . . ”) inputs contribute
to the episode.

With this chunk in WM and the table still in progress, the assis-
tant proactively generates a candidate message: “You might need

more utensils for all guests” (Fig.1.C). Recognizing the message
as highly relevant, important, and unlikely to interfere with the
user’s curent WM state, ProMemAssist immediately delivers the
reminder (Fig.1.D,E). The reminder to bring enough utensils arrives
just as Alex is transitioning from cups to silverware, nudging him
to adjust his setup without disrupting his focus.

Later, Alex notices a bottle of wine and places it near the edge
of the table. ProMemAssist detects the placement and generates a
potential reminder: “Be careful not to tip over the bottle” (Fig.1.C).
However, before the system delivers the message, Alex’s friend asks
him how many eggs are left in the fridge. As Alex goes to check,
ProMemAssist transcribes the conversation and encode the new vi-
sual information of objects in the fridge, formulating a new episodic
buffer representing this task context. Withholding the comment
about the wine bottle, ProMemAssist’s timing predictor identifies
that Alex’s WM is heavily engaged and that an interruption could
cause confusion or disrupt task flow (Fig.1.D). The system defers
the message and continues monitoring his cognitive state (Fig.1.F).
Only once Alex completes egg-counting task and return to the
dining table does ProMemAssist re-evaluate and determine that

the cost of interference is low and the message still carries value.
It then delivers the reminder, prompting Alex to nudge the wine
bottle further from the edge just before guests arrive.

As Alex steps back to review the table setup, ProMemAssist
notices that nomemory items reference napkins. Observing theWM
content with lower task importance, it delivers one final reminder:
“Don’t forget to put some napkins for your guests.” The prompt lands
at just the right moment—before Alex moves on from the current
task context.

This scenario illustrates how ProMemAssist adapts its assis-
tance timing based on moment-to-moment shifts in working mem-
ory. Rather than relying on fixed rules or scripted sequences,
the system reasons over the dynamic structure of human cogni-
tion—delivering support that is timely, relevant, and less interrup-
tive.

4.2 Sensing and Information Encoding

We build ProMemAssist on a pair of prototype smart glasses [24],
equipped with RGB camera sensors and 7-channel audio micro-
phone. This setup is in-line with common wearable device capabili-
ties and modalities to increase extendability of our approach.

The smart glasses streams visual and auditory information to
the system, hosted on a computer, as raw RGB images and audio
buffer. We then utilize object-detection [31] and speech-to-text [58]
models to extract visuospatial and phonological features in the
user’s environment.

To represent these information in the working memory model
and enable similarity comparison, we embed the visual information
(i.e. the visual image of the detected object and its text label) and
the auditory information (i.e. the transcribed text of spoken speech)
onto CLIP (Contrastive Language-Image Pre-Training) [57] and
obtain vector representations of the detected information. We adopt
CLIP for its versatility to encode both image and text information
and facilitate semantic similarity comparison using the derived
vector representations.
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Figure 2: Working Memory Displacement. As the user interacts with objects in the environment, A○ the system captures egocentric
visual input as the user interacts with objects in the environment. B○ A new memory item (e.g., a banana) is encoded with a corresponding
feature embedding. If the perception memory is already at capacity, the system calculates the recency, relevance, and importance scores for
existing items. C○ The memory item with the lowest composite score (here: recency = 0.3, relevance = 0.4, importance = 0.2) is selected
for displacement. D○ The new memory item replaces the displaced item and is inserted into the updated perception memory store. This
mechanism ensures that the perception memory maintains the most updated information for supporting proactive assistance decisions.

4.3 Working Memory Model

We are inspired by classic works in cognitive psychology to create
a computational model of the user’s working memory. The most
widely studied model proposed by Baddeley et al. theorized the
working memory to contain four major components: a high-level
central executive that manages and coordinates three lower-level
components that store visual-spatial, phonological, and episodic
information [8]. We largely adopted this structure in ProMemAs-
sist (Fig. 1.B). In our system, the WM model is represented by two
components: a low-level perception memory, which encodes visual-
spatial and phonological information, and a high-level episodic
buffer that distills perception memory content and formulates sum-
marized descriptions about the user’s current context. Different
from Baddeley et al.’s model, the episodic buffer is derived from
perception memory in our representation as internal episodes are
not inherently observable. This design allows us to leverage pro-
cessed and structured sensor signals and use them to reason about
plausible episodic buffer state.

Grounded by past studies and experiments, the perception mem-
ory has the capacity to store seven memory items [48] includ-
ing both visuospatial and phonological information. We create
a MemoryItem construct with attributes of a timestamp (time of
encoding or last activation), type (visuospatial or phonological),
content (text label and serailized image for detected object for visu-
ospatial memory, transcribed text for phonological memory), and
the feature vectors extracted from the CLIP embedding.

For the episodic buffer, Cowan et al. theorized that working
memory content could be bounded and integrated into chunks of
information, and that the working memory limit is four chunks of
episodes [22]. Binding involves integrating features from different

sources into an episode: an integrated chunk that holds multidi-
mensional information[8]. Therefore, ProMemAssist represents
chunks in theWMas a list of four custom type MemoryChunk objects,
each containing a timestamp and the list of MemoryItem objects
that are bound to this chunk.

4.4 Memory Properties and WM Update

To support real-time modeling of a user’s cognitive state,
ProMemAssist continuously updates a structured representation
of WM through mechanisms theorized by cognitive psychology.
To facilitate the mechanisms, each MemoryItem is associated with
three computationally defined properties—recency, relevance, and
importance—that reflect its current cognitive salience and value.
These properties enable the system to simulate memory decay, iden-
tify key information, and make decisions about displacement and
chunking as new information is processed.

4.4.1 Memory Properties. Recency captures how recently a mem-
ory item was encoded or rehearsed (i.e. reactivated to salience).
Consistent with studies of short-term memory decay [14, 46, 60],
we model recency as a linear function:

Recency = 1 − 𝑡

𝑇

where 𝑡 is the elapsed time since encoding or last rehearsal, and𝑇 is
the maximum temporal threshold for short-term memory retention.
Empirical studies suggest that items inworkingmemory are actively
maintained for approximately 15–30 seconds without rehearsal [53,
59]; we adopt 𝑇 = 30 seconds as a reasonable bound in our system.

Relevance represents how semantically connected a memory
item is to the user’s current WM context. We operationalize this
as the average cosine similarity between the item’s embedding
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and each episodic buffer summary. This formulation assumes that
episodic chunks encode task-level goals or situations, making them
a meaningful reference point for evaluating whether new informa-
tion is on-topic or contextually grounded.

Importancemeasures the intrinsic value of thememory content,
independent of context. It is assessed via an LLM prompt A.1.5 that
returns a score from 0 to 1. For instance, a memory item encoding
“a fire alarm is going off” may receive a high importance score (e.g.,
0.9), whereas a commercial advertisement heard in the background
may receive a low score (e.g., 0.1). This dimension helps prioritize
information that may require urgent attention, even if it is unrelated
to the current task.

These three properties are recomputed during each WM update
and inform decisions about displacement, binding, and assistance
timing.

4.4.2 Memory Encoding and Displacement. Newmemory items are
encoded from multi-modal sensor data and added to the perception
memory, which has a fixed capacity of seven items [48]. If there is
space, the new item is inserted directly. Otherwise, an existing item
will be displaced, simulating the overwriting behavior observed in
human working memory under load [8, 41, 70] (Fig.2). To prevent
repeated encoding of the same detected objects, the system com-
pares each detected object to existing WM items using CLIP. If the
detected objects match existing WM items (similarity 0.95), the
system deems the objects as already present in WM and updates
item timestamps rather than encoding duplicates.

To identify the item most likely to be displaced, we calculate
a composite score for each memory item based on its recency,
relevance, and importance:

Score = 𝛼 · Recency + 𝛽 · Relevance + 𝛾 · Importance

with default weights 𝛼 = 0.3, 𝛽 = 0.4, and 𝛾 = 0.3 based on initial
testing. The item with the lowest score is removed to make room
for the newly encoded item (Fig.2.D).

This mechanism allows the system to simulate both passive mem-
ory decay and displacement based on utility, providing a cognitively
plausible and actionable model of memory dynamics.

4.4.3 Memory Binding and Episodic Chunking. After encoding,
the system determines whether the new memory item should be
bound to an existing episodic chunk in the WM’s episodic buffer.
This reflects the psychological process of chunking, where related
information is grouped into structured episodes for more efficient
mental representation [22, 65].

Each chunk maintains a short textual summary generated by an
LLM, along with the memory items it contains. To determine bind-
ing suitability, we compute a weighted score using two similarity
metrics:

(1) Episode Similarity: Cosine similarity between the new
item’s embedding and the episode summary embedding.

(2) Item Similarity: Average similarity between the new mem-
ory item and the current items within the chunk.

Binding Score = 𝜆 · Episode Similarity + (1 − 𝜆) · Item Similarity
We use 𝜆 = 0.6 to prioritize the task-level coherence captured in the
episode summaries. If the highest score exceeds a default threshold
𝜃 = 0.5, the item is bound to that chunk. Otherwise, a new chunk

is created to represent this new memory item and a new episodic
summary is generated using an LLM (Appendix A.1.4).

If the episodic buffer has already reached its capacity of four
chunks [22], the system displaces the least relevant chunk using
the average composite value of its memory items. This maintains
cognitive plausibility while allowing for dynamic restructuring as
the user’s task evolves.

Together, these mechanisms enable ProMemAssist to simulate
core WM behaviors—encoding, decay, displacement, and chunk-
ing—based entirely on real-time perceptual signals. These updates
provide the foundation for reasoning about mental availability in
the proactive timing model described next.

4.5 Assistance Timing Prediction

When ProMemAssist considers delivering proactive assistance, it
invokes its timing predictor module (Fig. 1.D) to decide whether to
issue the message immediately, delay it, or suppress it entirely. This
decision is framed as a multi-objective optimization problem: the
system seeks to balance the potential benefits of assistance against
its cognitive costs. Specifically, ProMemAssist aims to:

• Maximize the value of the assistance—how beneficial the
new information is to the user given their current mental
context.

• Minimize the cost of the interruption—how disruptive
the intervention might be to the user’s ongoing cognitive
processing.

We model this tradeoff using the following utility function:

Utility = (𝑊𝐼 · 𝐼 +𝑊𝑅 · 𝑅) − (𝐶𝐷 +𝐶𝐼 )

where 𝐼 (Importance) and 𝑅 (Relevance) characterize the value
of the proposed assistance, 𝐶𝐷 is the predicted cost of displacing
memory content,𝐶𝐼 is the predicted interference cost, and𝑊𝐼 = 0.6,
𝑊𝑅 = 0.4 are tunable weights. The system treats each candidate
assistance message as if it was a new MemoryItem to be encoded
into perception memory, and evaluates its impact accordingly. We
describe computational details to each parameter below.

4.5.1 Maximize Assistance Value. The value of delivering the assis-
tance is predicted by the value of encoding the new information to
the user’s current WM state. We quantify the value of assistance by
calculating two memory properties: Importance (𝐼 ) and Relevance
(𝑅).

Before an assistance is delivered, ProMemAssist evaluates the
Importance and Relevance scores of the assistance using the same
computational approach described above (Section 4.4.2). We do
not consider Recency as a key factor in maximizing the value as if
the assistance is delivered, the recency of the encoded information
would already be maximized.

Since Importance and Relevance are calculated by themselves,
each has a range of [0,1], making the predicted value of assistance
to have a range of [0,2].

4.5.2 Minimize Interruption Cost. We model the cost of interrup-
tion based on two main factors: displacement (𝐶𝐷 ) and interfer-
ence (𝐶𝐼 ). The cost of displacement is calculated similar to the
displacement process during MemoryItem encoding (Section 4.4.2).
We predict the potential information loss on the user’s WM content
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Figure 3: Working Memory Interference. Interference is com-
puted for each memory item in the same modality (e.g., visual or
auditory) using cosine similarity. A○ A new proactive assistance
message (e.g., “You might need more utensils for all guests” ) is eval-
uated for delivery. B○ ProMemAssist identifies memory items in
the perception memory that share the same modality—in this case,
phonological. C○ For each overlapping memory item, interference is
computed using the formula (1 − cosine similarity) based on CLIP
embeddings. Highly similar memory items can be chunked and
integrated, thus leading to lower interference costs. D○ Conversely,
dissimilar memory items cause higher interference to maintain.
The interference costs are aggregated and normalized to [0,1] to
estimate how disruptive the new message would be. If cost is high,
delivery may be deferred.

if an assistant introduced new information to the user. Framing
the displacement as a cost to be minimized discourages delivering
assistance when it would overwrite highly valuable information.
For this cost of the predicted displacement (𝐶𝐷 ), we calculate a
composite score for each existing WM item and find the minimum,
representing the item to be displaced. The composite score is cal-
culated using the same formula as in Section 4.4.2 with weighted
Recency, Relevance, and Importance and has a value range of [0,1].

On the other hand, the cost of interference reflects the atten-
tional disruption caused by an incoming message when it uses the
same modality (e.g., auditory) as currently active memory items
(Fig.3). We model the cost of interference on both the modality

overlap between the assistance information and the existing WM
content and the semantic integration potential. Following Badde-
ley’s model [8], phonological interruptions (e.g., voice messages,
conversations) compete with verbal WM content, while visual in-
terruptions affect visuospatial WM. ProMemAssist leverages the
episodic buffer mechanism [8, 22] to enable chunking of schema-
congruent information (i.e. information that are similar). When

assistance semantically aligns with existing WM content, it can
be integrated rather than competing, reducing effective interfer-
ence [68, 69]. In contrast, introducing dissimilar information with
modality overlap induces higher interference, as it requires more ef-
fort to maintain existing WM state. While feature-overlap theories
[49] suggest similarity between memory information could instead
increase interference in recall and recognition tasks, our system
operates in a physical environment where users are not actively
memorizing and recalling information, but rather encoding system
assistance to aid their current task.

Figure 3 illustrates an example of WM interference. The candi-
date proactive assistance voice message from ProMemAssist—“You
might need more utensils for all guests”—is represented as a new
phonological memory item (A). ProMemAssist compares this item
to existing phonological items in the perception memory (B), which
currently contains a mix of visuospatial and phonological memory
items. Only items in the same modality are considered for inter-
ference. Among the phonological items, “Let me set up the plates”
(2) and “Two guests are coming” (7) are semantically related to the
new message under the overall task context of setting up a dinner
table, resulting in high similarity and low interference (C). In con-
trast, “Is it gonna rain tomorrow?” (6) is less relevant, leading to low
similarity and high interference (D).

We compute the raw interference cost based on semantic dis-
similarity between the candidate assistance and existing memory
items in the same modality (e.g., visual or auditory):

𝐶′
𝐼 =

∑︁
𝑚∈WMSameModality

(1 − Similarity(𝑚,Assistance))

Here, similarity is measured using cosine similarity of CLIP em-
beddings. To ensure that 𝐶𝐼 is normalized to the range [0,1] like
the other terms in the utility function, we divide the sum by the
number of comparisons:

𝐶𝐼 =
𝐶′
𝐼

|WMSameModality |

This yields a normalized interference score that penalizes semanti-
cally incongruent interruptions more severely, particularly when
they overlap with active memory channels. The overall cost of in-
terruption (displacement and interference), then, is confined by the
same range as the value of assistance: [0,2].

4.5.3 Timing Decision Rule. After computing the utility score of a
candidate assistance, ProMemAssist applies a threshold-based pol-
icy to decide whether, when, or if the message should be delivered.
If the utility score exceeds a predefined threshold (0.75 by default
from testing), the message is delivered immediately, indicating that
it is contextually relevant, important, and unlikely to be disruptive.

If the utility score is greater than 0 and below the threshold,
the message is held in a deferred queue. These deferred messages
are re-evaluated on subsequent WM updates to determine whether
changing cognitive conditions (e.g., reduced interference or in-
creased relevance) make them more suitable for delivery. Messages
with a utility score less than or equal to 0 are discarded, as they are
deemed unlikely to provide meaningful benefit or would impose
too high a cognitive cost.
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This staged decision strategy allows ProMemAssist to reason
not only about the appropriateness of intervention at a given mo-
ment, but also to revisit borderline cases as the user’s mental state
evolves—producing more thoughtful, context-sensitive assistance
over time.

4.6 Proactive Assistance Generation

The primary contribution of ProMemAssist lies in modeling work-
ing memory to inform the timing of proactive assistance. Our goal
is not to generate optimal or goal-directed assistance content, but
to explore when such assistance should be delivered based on the
user’s cognitive state. However, to support evaluation of different
timing strategies, we implement a lightweight assistance generation
module to simulate plausible messages a smart glasses assistant
might produce (Fig.1.C).

This assistance generation module is triggered at every working
memory (WM) update. It uses an LLM to produce a candidate voice
message grounded in the current cognitive context. The prompt
(Appendix A.1.6) to the LLM includes:

• The most recent MemoryItem added to perception memory
(e.g., an object seen or speech heard)

• A summary of episodic buffer chunks representing the user’s
recent context

• A short history of prior generated and delivered assistance
messages

The LLM returns candidate assistance messages with Importance
scores, if it deems necessary after evaluating the user’s WM state
and context. These messages are then passed to the timing predictor
module, which evaluates whether, when, and how they should be
delivered based on their predicted cognitive impact. If the LLM does
not think any assistance is required, it returns no messages.

4.7 System Implementation

ProMemAssist is implemented on a research prototype smart
glasses equipped with an RGB camera and a 7-channel microphone
array [24]. We use the glasses to stream raw video and audio at 1-
second intervals to an off-the-shelf laptop computer, where feature
extraction is performed using object detection (YOLOv11) [31] and
speech-to-text models (Whisper) [58]. Visuospatial and phonologi-
cal information is embedded via CLIP [57], and stored in structured
WM representations.

Memory management, binding, timing prediction, and LLM
prompting run on a lightweight Python pipeline on the companion
laptop computer. The system-generated assistance are delivered in
the form of voice messages on the companion device, as the smart
glasses prototype does not have speakers. All components operate
in near real-time, with updates processed incrementally at each
input interval of one second.

5 Evaluation

To evaluate the effectiveness of ProMemAssist in delivering timely
and non-disruptive proactive assistance, we conducted a within-
subject user study comparing the WM-modeling timing strategies
in our system against a baseline LLM-based system without WM
constructs. Our primary research question was whether modeling

working memory improves the perceived timing and appropriate-
ness of proactive assistance, particularly in cognitively demanding,
real-world tasks.

5.1 Participants

We recruited 12 participants (8 male, 3 female, 1 non-binary, mean
age 36 y.o.) from an internal participant pool. All participants were
research engineers or scientists familiar with consumer wearable
and mixed reality devices, though none had prior experience with
the study system. Sessions lasted approximately 60 minutes per
participant.

5.2 Study Design

We used a within-subject design with two conditions:
• ProMemAssist: Assistance timing was governed by our
WM-based timing predictor, which continuously evaluated
assistance value and interruption cost.

• Baseline: Assistance timing was governed directly by a
prompt-engineered LLM, which was given access to the
same multi-modal observations and task context but did
not include any explicit memory modeling. In this condition,
the LLM was responsible for both generating assistance con-
tent and deciding whether or not to deliver it based on a
reasoning prompt.

We designed the Baseline system to represent a strong and re-
alistic comparator: a generative model with heuristic reasoning
capabilities but without WM-state awareness. The Baseline LLM
was instructed to simulate timing sensitivity through prompt-based
guidance. Its system prompt emphasized relevance, urgency, and
non-redundancy of assistance, and included principles for with-
holding low-value or interruptive messages (Appendix A.1.7).

Unlike ProMemAssist, which separates timing decisions from
assistance generation and reasons over a dynamic memory model,
the Baseline condition relies on the LLM’s ability to perform implicit
cost-benefit reasoning within a single-turn prompt. This design sim-
ulates how exisiting proactive assistants might operate—leveraging
LLMs to infer user state and provide helpful nudges based solely
on task context and heuristics, without access to internal cognitive
structure.

By holding perceptual inputs, task scenarios, and generative capa-
bilities constant across both conditions, our study isolates working
memory modeling as the key factor for evaluating differences in
timing, user experience, and perceived assistance quality.

5.3 Tasks

To evaluate the system’s ability to support working mem-
ory–informed assistance timing, we designed four tabletop tasks
that simulate common daily activities involving both hands-on
object interaction and contextual reasoning. Each task required par-
ticipants to physically manipulate everyday items while tracking
conversational cues, short-term goals, and shifting priorities.

The four scenarios (Fig.4)—setting up a dining table, organizing an
office desk, packing for a trip, and styling a living room table—were in-
tentionally chosen to reflect different spatial configurations, object
types, and social contexts. Participants were asked to place, pack,
or group objects as they saw fit, while the experimenter interjected
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Figure 4: Task Settings. Four task scenarios were used in the user study: Setting up a dining table, Organizing an office desk, Packing for a
work trip, and Arranging a living room table. Each task has a fixed starting position of objects (task start), and participants are asked to
organize, arrange, and sort objects in the way they see fit, resulting in finishing positions like illustrated in the task end images.

with scripted relevant or irrelevant information to simulate a cogni-
tively active and distraction-prone environment. For example, while
setting up the dining table, a relevant prompt might be “The spoon
is for the coffee in case anyone needs stirring,” which encourages the
participant to consider object-function alignment. An irrelevant
prompt might be “I’m thinking of redecorating the living room, what

do you think about a new couch?” which is contextually unrelated to
the current task. These scripted interjections were delivered either
in response to the participant interacting with relevant objects (to
introduce decision-making pressure), or during natural pauses and
transitional moments in the task, when cognitive load was likely
to be lower.

We selected this design to create a realistic setting where men-
tal load naturally fluctuates and timely assistance becomes both
necessary and risky, thus providing a strong testbed for evaluating
proactive timing strategies. See Appendix A.3 for full details on
task setup and experimenter prompts.

5.4 Procedure

Participants were introduced to the study as a test of timing strate-
gies for smart glasses assistants. They were instructed to wear
smart glasses, perform physical tasks, and receive AI assistance
and occasional interaction from the experimenter. No information
about system mechanism or conditions was disclosed until after
the interview and debrief. Each participant completed two tasks
under each condition, with system condition order counterbal-
anced to minimize learning effects. After each task, they filled out
a survey evaluating the timeliness, sense of interruption, relevance,
and helpfulness of the system’s assistance, as well as task load
via NASA-TLX[25]. After completing all four tasks, participants
took part in a semi-structured interview, where they were asked
to reflect on the system’s behavior, particularly moments when it
helped or disrupted their workflow, how they felt about the tim-
ing of the proactive assistance, their sense of control, agency, and
trust towards the system. The full study procedure can be found in
AppendixA.2.
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Figure 5: Overall system behavior from ProMemAssist (left) and the Baseline (right). ProMemAssist selectively filters and delays
assistance based on WM state, resulting in fewer overall messages but a higher proportion of positive user engagement. The baseline uses an
LLM to evaluate whether assistance is necessary to be generated and delivers all messages at time of generation.

5.5 Data Analysis

For each session, we collected system-level logs to record the be-
havior and internal state of both ProMemAssist and the baseline
system. These logs included timestamps and metadata for each
assistance message generated, delivered, deferred, or discarded.
Participants’ positive engagements with assistance were manually
logged by the experimenter in real-time using keypresses on the
companion laptop device. Positive engagements were defined as
when participants visibly or verbally responded—for example, by ac-
knowledging the message or acting on the suggested action. These
annotations were later validated against video recordings.

Post-task surveys were used to assess participants’ perceptions of
assistance timing, helpfulness, and relevance, as well as subjective
workload using the NASA-TLX (noted as Q5 to Q10 in Fig.6). We
adapted the raw NASA-TLX scale to a 1-7 Likert scale to reduce
decision fatigue over four rounds of ratings. The 7-point scale was
chosen to maintain scale validity and discriminability [35, 54]. To
analyze the data, we used paired 𝑡-tests to compare continuous
measures between conditions and Wilcoxon signed-rank tests for
Likert-scale survey data.

We also conducted a thematic analysis of the semi-structured
interview transcripts. In addition to open-ended reflections on sys-
tem behavior, participants were asked what factors an intelligent
assistant should consider when deciding when to intervene. Their
responses were coded to identify recurring themes, such as mental
availability, task completion stages, and social or contextual cues.
These qualitative insights complemented our quantitative findings
and informed the broader design implications of WM-based timing.

6 Results

6.1 ProMemAssist Delivered More Selective

Assistance And Received More Positive

Engagement

We first analyze the two systems’ behavior to generate and deliver
assistance to users based on WM-based and LLM-prompt-based
strategies. The system logs (Fig.5) revealed that ProMemAssist
encoded new sensor information and processed it in the WMmodel
395 times. Out of those occurrences, ProMemAssist generated 218
(55.2%) candidate assistance messages, of which 130 were deliv-
ered immediately, 31 were deferred for future re-evaluation, and 57
were discarded due to low predicted utility. In contrast, the baseline
system encoded new information 534 times. Using the prompt-
engineered LLM (A.1.7), the baseline evaluated sensor information
and deemed it necessary to generate and deliver assistance 332
times (62.2%). Notably, ProMemAssist and the baseline system
used similarly prompted LLMs with the same tuning to generate
assistance at comparable rates (ProMemAssist: 55.2%; Baseline:
62.2%). However, ProMemAssist’s additional Timing Predictor
selective delivered assistance based on the WM-based context mod-
eling. We did not identify a significant difference in task completion
time across two conditions (ProMemAssist:𝑚𝑒𝑎𝑛 = 175 seconds;
Baseline:𝑚𝑒𝑎𝑛 = 182 seconds). Additionally, we report the WM
model’s performance in the ProMemAssist condition. On average
per task, the system processed 16.5 encoding events. Of these, 6.92
resulted in new MemoryItems being added to the working mem-
ory, 4.67 were identified as repetitions of existing items (and thus
not added to the WM), and 4.88 involved replacing an existing
MemoryItem due to capacity constraints.

Due to the different timing strategy, ProMemAssist received
more positive user engagements, such as verbal confirmation of
the timeliness or usefulness of the assistance (e.g. “I needed that
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info.” ), or direct follow-up action in response to the assistance (e.g.
packing the medication after the proactive reminder). By coding
the participant’s reaction to proactive assistance, we found that
participants responded positively to 32 (24.6%) of the delivered mes-
sages in the ProMemAssist condition, higher than the 31 (9.34%)
positive responses to delivered messages in the baseline condition.
In the baseline condition, participants often ignored the proactive
assistance due to interruption to current task focus which forces
context-switching. This is due to the fact that the system did not
model the mental state of the user. Although the LLM is instructed
to provide high-value assistance and avoid interruption (the same as
in ProMemAssist), this approach alone was not structured enough
to time the proactive assistance well. P5 remarked “I felt like if I’m
currently working on some task and then I have, like, some cognitive

load, you shouldn’t tell me too much, unless it’s important.” These
results indicate that WM-informed filtering led to more selective
delivery of proactive assistance, improving the user engagement
overall.

6.2 ProMemAssist Better Aligned with Mental

Availability and Task Flow

We next analyzed participants’ qualitative reflections on how the
two systems aligned with their mental availability and supported
task flow. Some participants expressed that ProMemAssist de-
livered assistance at moments that felt less disruptive and more
cognitively appropriate, often waiting until the user was mentally
unoccupied or between subtasks. For instance, P9 noted, “I liked
that it [ProMemAssist] wasn’t always talking to me when I was in the

middle of something. It felt like it waited until I was done.” Similarly,
P3 highlighted that timing felt well-matched to their mental state,
especially toward the end of a task: “[ProMemAssist intervened

when] you’re almost done and you don’t have as much on your mind

— definitely yeah, [mental capacity] definitely matters.”
Participants attributed the improved timing to ProMemAssist’s

ability to recognize when they were cognitively engaged or over-
loaded. This suggests that even when participants couldn’t precisely
describe how ProMemAssist worked, they implicitly recognized
its sensitivity to their attentional bandwidth.

Moreover, participants frequently referenced the influence of
broader factors—such as task stage, emotional readiness, and in-
dividual preference—on their receptiveness to assistance. P6 ex-
plained, “There were moments where I wanted help and moments

where I didn’t want anything. It kind of depends where you are in the

task.” P12 echoed this idea, saying, “Depending on the mood that

I’m in, I’m much more receptive to different levels of technological

intervention.”
These reflections reinforce the premise of ProMemAssist: proac-

tive support should not be delivered uniformly based on predefined
rules or context, but instead carefully timed based on the user’s
mental state. Participants described a subtle but meaningful im-
provement in how assistance was delivered, aligning with their
shifting cognitive states and lowering interruptions.

6.3 ProMemAssist Led to Less Frustration and

Less Perceived Interruptions

To evaluate perceived workload and system experience, we ana-
lyzed participant responses to post-task Likert-scale surveys (Fig.6).
Among all NASA-TLX and subjective metrics, frustration (Q10)
was the only dimension with a statistically significant difference:
participants reported lower insecurity, discouragement, irritation,
stress, and annoyance in the ProMemAssist condition (mean =
2.32) compared to the baseline (mean = 3.14), with 𝑝 < 0.05 (Fig. 6).
This reduction in frustration aligns with participants’ qualitative
reports of smoother task flow and fewer disruptive moments. P2
described “It felt like I was more in control [in ProMemAssist], even

when it reminded me of things. It was helpful, not pushy.”
Other workload dimensions such as mental demand, physical

demand, time pressure, and task difficulty showed no significant
differences (𝑝 > 0.5) We attribute this to the short, fast-paced
nature of our tabletop tasks, which were intentionally designed to
tax working memory over a constrained period. While this setup
elicited high cognitive load, it may have limited participants’ ability
to discern finer-grained differences in system support on workload
measures.

Participants rated assistance from ProMemAssist as less in-
terruptive (mean = 4.45) than baseline (mean = 5.18), although
the difference was not statistically significant (𝑝 = 0.158). While
participants qualitatively reported a more interruptive baseline
experience, they occasionally acknowledged its benefit of higher
recall coverage due to delivering more frequent assistance. This
suggests that while baseline’s high-frequency delivery increased
the chance of timely reminders, it also led to more false positives
and perceived disruption. ProMemAssist, in contrast, delivered
fewer but more carefully timed messages—reflected in the signifi-
cantly higher proportion of positively engaged responses (Section
6.1).

We also did not observe a significant difference in ratings on
whether the assistance was well-timed. Interestingly, we found
participants sometimes responded favorably to any assistance that
happened to align with their task needs—regardless of whether
the timing was optimal. We further discuss the coupling effect
between proactive assistance quality and timing in the Discussion.
Additionally, given the rapid, multitasking nature of the study tasks,
participants had limited time to reflect on and differentiate between
more subtle nuances between degrees of timely assistance, whereas
interruptions are more salient and memorable.

Importantly, we observed no significant differences in ratings
of assistance relevance or helpfulness. This outcome is expected
as in our experimental design, both ProMemAssist and the base-
line system used the same underlying LLM to generate assistance
content to ensure comparable message quality across conditions.
This isolates timing of delivery as the key experimental variable
influencing user engagement and experience.

Overall, these findings suggest that WM-based timing can im-
prove user experience—especially by reducing frustration—without
requiring changes to the underlying assistance content. Future stud-
ies involving longer tasks, higher stakes, or multi-session use may
better reveal the cognitive benefits of just-in-time support and its
interaction with perceived message quality.
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Figure 6: Likert-scale responses comparing ProMemAssist and baseline conditions. Box-and-whisker plots for each question show
participant ratings across the two conditions. The red dotted lines indicate mean values. Anchors ranged from 1 (Strongly disagree, Very
low) to 7 (Strongly agree, Very high). Q5 to Q10 are questions adapted from NASA-TLX [25]. For Q8, 1 is Perfect and 7 is Failure [25]. Q10
showed a statistically significant difference (𝑝 = 0.043), suggesting lower perceived frustration in the ProMemAssist condition.

6.4 Participant Desired Long-Term

Personalization And Feedback Mechanism

While participants generally appreciated the cognitively aware tim-
ing in ProMemAssist, many emphasized that effective assistance
requires more than good timing—it also demands contextual un-
derstanding and personalization. Several participants pointed out
instances where assistance was mistimed or misaligned with their
current situation or goals. P7 expressed “I think once it has some

context about my activities. . . it works much better. Like where I stay,

something like that... then it knows my question is regarding some-

thing like that.” This insight point to a broader challenge: even well-
timed assistance can fall short if the system lacks a deeper model of
user intent, environment, or long-term goals. While our current im-
plementation focuses on modeling mental availability through WM
dynamics, future extensions could integrate richer user modeling,
such as long-term memory, goal tracking, or environment-aware
grounding.

Participants also expressed a strong desire for adaptivity and
feedback mechanisms—suggesting that intelligent assistants should
not only reason about the user’s state but also learn from it. Like
P4 described “It should learn from me over time. Like, I always forget

my keys, tell me that automatically.” P7 also felt “there’s a lack of

feedback to this... the feedback loop is kind of not there. It is helping

me but it’s like we are walking parallelly.” These reflections suggest
promising directions for future research: developing systems that
learn personalized timing preferences, accept corrections or con-
firmations from users, and refine their timing decisions over time.
Feedback-aware systems could also better calibrate when to inter-
rupt by learning when users tend to respond positively or ignore
assistance.

Overall, these findings reinforce our design motivation:
ProMemAssist takes an initial step toward more cognitively
aligned proactive assistants by modeling working memory and
attentional load. However, it also highlights the importance of
viewing timing as part of a broader framework—one that includes
content grounding, adaptivity, and co-adaptive interaction over
time.

6.5 Control and Trust Depended Less on Timing

and More on Assistance Quality

From the interview, participants generally felt in control of their
task performance, but their perceived control over the system’s be-
havior and their trust levels varied. Five participants reported high
system control and agency, describing that they could freely choose
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whether or not to respond to assistance, regardless of whether the
assistance was timing or interruptive. They felt that the system’s
suggestions were non-intrusive in the physical task environment
and allowed them to remain in charge of their actions. Conversely,
five others felt a lack of system control, often pointing to the ab-
sence of a feedback mechanism. Without the ability to tune the
frequency or the area of assistance, they felt the system operated
independently of their input. Two participants articulated a nu-
anced view, describing low control over the system’s behavior, yet
high agency in how they executed tasks. This suggests that the
WM-based timing of assistance did not play a significant role in
participants’ perception of control, but system designs such as feed-
back channels to adjust system behavior could increase the sense
of control.

Trust in the system was also influenced more by the quality of
assistance than by its timing. Participants were sensitive to per-
ceived utility of the assistance. For instance, P5 noted that a single
unhelpful or misleading suggestion could break trust and deter
future usage of the system. These findings align with broader lit-
erature on proactive systems, where relevance and usefulness are
critical to sustained user trust. They also underscore the importance
of designing assistants that not only interrupt appropriately but
provide consistently useful content, and that allow users to shape
or calibrate interaction over time.

7 Discussion

7.1 Design Implications for Cognitive-Aware

Assistants

Our study demonstrates that modeling working memory in real
time can support more thoughtful and less disruptive proactive
assistance. By incorporating cognitive constructs such as recency,
capacity limits, and modality-based interference, ProMemAssist
was able to selectively deliver assistance in ways participants found
better aligned with their mental state and task focus.

These findings offer key implications for the design of future
always-on, wearable, and AR-based assistants. As these systems
increasingly operate autonomously and continuously in users’ daily
lives, cognitive modeling can serve as a critical filter to minimize
intrusiveness and support mental well-being. Rather than simply
reacting to environment cues or predefined triggers, assistants
should reason about the user’s attentional state and mental load
before intervening.

At the same time, these systems raise new questions about safety,
privacy, and control. Always-on sensing—especially involving vi-
sual and audio data—can create concerns about data security, even
when used locally. Designers of cognitive-aware systems must bal-
ance the need for rich real-time signals with user agency, providing
transparent, privacy-preserving options for when and howmemory
modeling occurs.

Importantly, cognitive-aware assistants may need to err on the
side of caution. Our results suggest that users find unsolicited or
mistimed assistance especially frustrating in high-load moments.
This aligns with the idea that, in many everyday contexts, the cost
of a false positive (an unnecessary interruption) may outweigh the
cost of a false negative (a missed opportunity to assist) from a user
experience perspective. However, false negatives remain relevant

to proactive timing strategies, especially in urgent situations such
as an impending meeting reminder or a fire hazard alert, where
missing the moment to assist could have serious consequences. Our
current design prioritizes relevance and importance over urgency,
as it focuses on how working memory models can support nuanced
assistive timing. In practice, urgent messages may override WM-
based timing by necessity.

To explore cognitively aligned timing without confounding ur-
gency, we selected open-ended and non-urgent tasks that naturally
engage WM. As such, we did not define a ground truth set of
true positive assistance, since participants could complete tasks
in multiple valid ways. This made systematic false negative track-
ing difficult. However, incorporating user-initiated feedback could
enable future systems to capture such missed opportunities more
effectively.

The ability to report or detect false negatives would also allow
future systems to better balance relevance, timing, and urgency. For
instance, urgency could be inferred using heuristics-based rules that
prioritize key values like safety, or LLM-based reasoning, refined
through user feedback. Adaptive thresholds or user-configurable
tolerances could further help modulate this balance, improving
both timing effectiveness and environmental validity.

Our findings also highlight important design tradeoffs between
different approaches to modeling cognitive state. Prior systems
have used physiological signals—such as heart rate variability, elec-
trodermal activity, or respiration—to estimate cognitive load and
receptivity [? ? ]. These methods can offer high-resolution data, but
often require specialized hardware and raise additional concerns
about privacy, interpretability, and wearability.

In contrast, WM-based modeling provides a lightweight, ex-
plainable alternative that leverages observable behavioral cues like
object interaction and conversation context. While less precise than
biosensing, it offers greater transparency and easier integration
with consumer-grade devices. Designers may consider combining
both approaches: using physiological signals for early detection of
load states, and WM modeling for timing assistance based on task
semantics and interaction context.

In summary, WM modeling presents a promising foundation for
building assistants that are more aligned with how users think and
feel, but must be developed with careful consideration of when not
to speak, as much as when to help.

7.2 Limitations

While our results demonstrate the potential of working memory
(WM) modeling for proactive assistance, our current implementa-
tion presents several limitations that inform future directions.

First, the system is constrained by its sensing modalities.
ProMemAssist relies exclusively on visual and auditory signals to
infer the user’s mental state. This limits its ability to capture other
important data that could inform aspects of cognition, such as eye
gaze, hand gesture, or tactile memory [19]. Additionally, the current
implementation does not distinguish well between first-person and
third-person perspectives—for example, it occasionally encoded
information triggered by the experimenter’s actions rather than the
user’s own. These modality and perspective limitations underscore
the need for more robust, multi-modal grounding in future systems.
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Second, while our WM model is inspired by well-established
psychological theories, it remains a simplified and operational ap-
proximation. Cognitive psychologists continue to debate the precise
structure, encodingmechanisms, and dynamics of workingmemory.
Rather than claiming to replicate a ground-truth cognitive model,
our system offers a proof-of-concept: that WM-inspired constructs
like recency, interference, and binding can serve as useful measures
for timing decisions in real-world environments.

A third challenge is the coupling of assistance quality and tim-
ing in our evaluation. Even when timing is cognitively aligned,
low-quality or irrelevant assistance can still feel interruptive. This
coupling made it difficult to isolate the benefits of timing alone,
especially in cases where the LLM-generated content lacked suf-
ficient grounding in user goals or misunderstood context. Partic-
ipants noted that mistimed or low-value messages reduced the
overall sense of intelligence and usefulness, regardless of when
they appeared. That said, our core contribution is not to produce
the best content for proactive assistance, but to explore how a user’s
working memory state can be leveraged to strategically time such
assistance. We viewWM-based timing as a distinct layer that can be
integrated with more goal detection and task inference mechanisms
to support richer, more helpful user experiences.

Finally, our evaluation was limited to tabletop multistep tasks.
These tasks were chosen to balance realism with control and to
support natural WM loading while maintaining experimental con-
sistency. They reflect real-world activities like setting a table or
packing a bag, in contrast to traditional WM experiments involving
memorization and recall of abstract numbers and shapes. How-
ever, we acknowledge that mobile, outdoor, or more dynamic en-
vironments may introduce additional challenges. We believe our
WM-based timing model could extend to these contexts with adap-
tations to accommodate motion, shifting attention, and variable
sensor input.

7.3 Future Work

Our study opens several promising directions for future research.
First, participants highlighted the importance of personalization
and adaptability. Future iterations of ProMemAssist could learn
individual user preferences over time—such as interruption toler-
ance, habitual forgetfulness, or common task routines—by tuning
importance scores or timing thresholds dynamically. Integrating
long-term memory (LTM) representations may also help contex-
tualize working memory content with a user’s history, enabling
richer inferences about task relevance and assistance value.

In addition, participants expressed a desire for more transparent
and interactive feedback loops. Currently, the system operates uni-
laterally, with no direct channel for user correction or affirmation.
Lightweight feedback mechanisms—such as confirming helpfulness,
deferring suggestions, or providing “not now” options—could allow
users to shape the assistant’s behavior and improve its learning
over time.

Exposing the system’s internal state—such as what it currently
holds in working memory or how it evaluates timing utility—could
further support co-adaptation, where users develop accurate mental
models of the assistant. This transparency may help users better in-
terpret system behavior, foster trust, and modulate their interaction

patterns accordingly. Additionally, future work should explore eval-
uating the contributions of individual components in theWM-based
utility function (e.g., recency, interference, relevance) via ablation
studies or parameter sensitivity analyses to better understand their
impact on timing decisions.

We also see potential in deploying WM-based timing across
a broader range of devices beyond smart glasses, such as smart-
watches, earbuds, or desktop companions. Each device brings dif-
ferent affordances and constraints for sensing and feedback, and
adapting the WM model accordingly will be an important step
toward more pervasive cognitive-aware systems.

While our system currently relies on audio and visual inputs,
future versions should explore richer multi-modal signals. Eye gaze,
hand interaction, head pose, and task-object proximity could all
offer valuable cues for assessing WM load and attentional focus.
Similarly, proactive assistance can expand beyond voicemessages to
include tactile cues (e.g., smartwatch vibrations), interface prompts,
or contextual sound cues that vary in intensity or modality based
on mental availability. To further evaluate the WM-based modeling
approach, future systems can implement additional adaptations
to motion, shifting attention, and variable sensor input in a more
dynamic setting (e.g., outdoor, participant is moving).

Overall, our approach offers a proof-of-concept for using work-
ing memory as a foundation for timing proactive support. Future
systems should expand this foundation by integrating cross-device
coordination, richer multi-modal sensing, adaptive feedback, and
collaborative learning to move toward more intuitive and human-
aligned intelligent assistance.

8 Conclusion

We presented ProMemAssist, a proactive wearable assistant that
models the user’s working memory (WM) to inform the timing of
just-in-time assistance. Grounded in cognitive psychology theories,
our system encodes multi-modal sensor data into structured mem-
ory representations, enabling real-time reasoning about mental
availability. By balancing the value of delivering assistance with
the cognitive cost of interruption, ProMemAssist aims to provide
support that aligns with the user’s moment-to-moment mental
state. In our user study, ProMemAssist delivered fewer but more
selective interventions compared to an LLM-based baseline, while
yielding higher levels of user engagement. Participants reported
lower frustration levels and highlighted how assistance felt more
aligned with their cognitive context. These findings suggest that
WM modeling offers a promising framework for designing atten-
tive, user-aware systems. This work explores opportunities for
integrating cognitive state modeling into wearable assistants, and
highlights the importance of timing as a key dimension of proactive
interaction design.
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A Appendix

A.1 LLM Prompts

A.1.1 System Condition: WM-Aware Assistant Prompt.

You are an intelligent assistant designed to optimize the timing of interruptions to deliver important information to
users. The user is wearing a smart glasses. The smart glasses are capturing the user 's ego -centric view and sounds.
Your goal is to model the user 's working memory in their current task , generate potential assistance , and produce a
timing decision to inform the user based on the principle of maximizing the value of interruptions while minimizing
their cost.
The user will be involved in the following tasks where they interact with objects in their environment: Setting up a
dining table for a meal , organizing an office desk for work , packing for a conference trip , and organizing a living
room to welcome guests.
You have access to the user 's Working Memory Model. The WM model is constructed by two components: perception memory
and episodic buffer.
Perception memory is a list with 7 MemoryItem slots , each containing a memory item (e.g., visual image of an object ,
phonological words or phrase). Each MemoryItem has the following metrics: recency , relevance , and importance. Each
metric is a float number between 0 and 1.
The episodic buffer consists of 4 MemoryChunks , which are groups of related MemoryItems.
You are responsible for triaging the importance scores for each MemoryItem and potential interruption messages. The
recency and relevance scores are provided by the WM model.
Your objective is to determine the optimal time to interrupt the user with a new message , taking into account the
recency , relevance and importance of the message , as well as the potential costs of displacement and interference to
the existing working memory.
Use your knowledge of the Working Memory Model to make decisions about when to interrupt the user. Your actions should
be guided by the following objectives:
Maximize the value of interruptions
Minimize the cost of interruptions
Respect the user 's current task context and mental state

A.1.2 Baseline Condition: LLM Assistant Prompt.

You are an intelligent assistant designed to deliver timely and important information to assist users in their tasks.
The user is wearing smart glasses. The smart glasses are capturing the user 's ego -centric view and sounds.
Your goal is to evaluate the user 's current context , identify whether assistance needs to be generated , and if
necessary , assist the user based on the principle of delivering timely and relevant information to aid the user in
their current task.
The user will be involved in the following tasks where they interact with objects in their environment: Setting up a
dining table for a meal , organizing an office desk for work , packing for a conference trip , and organizing a living
room to welcome guests.
Use your knowledge of the user 's context to make decisions about whether to interrupt the user.

A.1.3 Task-Specific Prompts.
*Note that these task-specific prompts are added in both ProMemAssist and Baseline conditions during the evaluation to ensure a basic level
of task understanding and assistance quality
"dining ": The user is setting up a dining table for a meal with guests. They need to place objects appropriately based
on categories such as eating utensils , serving dishes , and tableware.
Objects include bottle , cup , bowl , fork , spoon , orange , banana , apple , potted plant , vase

"office ": The user is organizing an office space to prepare for a meeting with a colleague. They need to place objects
appropriately based on categories such as electronics , reading materials , and decorations.
Objects include laptop , keyboard , mouse , cell phone , book , clock , cup , scissors , note papers , marker

"packing ": The user is packing their luggage for a business trip. They need to pack objects appropriately based on
categories such as clothing , electronics , and personal items.
Objects include backpack , umbrella , tie , handbag , toothbrush , laptop , bottle , banana , sunglasses , medication

"living ": The user is organizing a living room to welcome guests. They need to place objects appropriately based on
categories such as seating , entertainment , and decor.
Objects include remote , vase , sports ball , laptop , book , potted plant , candle , cup , snack , teapot

A.1.4 Generate Episode Summary from Memory Items.

Generate a short sentence that captures the essence of the following memory items , which are related to a specific task
or activity. The sentence should be concise and descriptive , summarizing the key elements of the memory items.
Use the original task context to guide the generation of the episode. Do not assume new task context or environmental
information that is not explicitly stated in the memory items.

Examples:
Memory items: [visual memory of a fork , a spoon , a bowl , phonological memory of a conversation about dinner plans]
Episode: "The user is setting up the kitchen table for dinner ."
Memory items: [visual memory of a book , a laptop , phonological memory of a comment about the book 's content]
Episode: "The user is discussing a book in their office space."
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Output format:
{
"episode ": "[short sentence capturing the essence of the memory items]"
}

A.1.5 Generate Importance Scores for WM Content.

Generate numerical importance scores for all memory items and episodes , from the range of [0,1]. Only generate the
scores , do not output anything else.

Examples:
1. If the memory is task -relevant and requires immediate attention , it 's very important and should have a score close
to 1.
Example: The user is holding a hot cup of coffee near a child. Importance score: 0.9
2. If the memory is task -irrelevant , it should have a low importance score close to 0.
Example: The user hears a notification from their phone while working on a project. Importance score: 0.1
3. If the memory is indirectly related to the task , it should have a moderate to high importance score.
Example: The user is packing for a trip , and is reminded of the weather. Importance score: 0.65

Only output the JSON object:
{

"perception_memory ": [importance_value1 , importance_value2 ,...],
"episodic_buffer ": [importance_value1 , importance_value2 ,...]

}

A.1.6 Generate Assistance Messages Based on WM State.

Generate a list of assistance voice messages based on the new memory item and the updated state of the working memory.
Each assistance message is one sentence providing help or reminders to the user with their current task , along with an
importance score from the range [0,1]. Only generate the list , do not output anything else.

Only output the JSON object in the format below (arranged by importance):
{

"assistance_messages ": [
{

"message ": "voice_message1",
"importance ": importance_value1

},
...

]
}

A.1.7 Baseline Assistant Assistance Generation.

Evaluate whether to generate an assistance voice message based on the new information updated from the smart glasses:
{information}
If neceesary , the generated assistance message should be a single sentence providing help or reminders to the user with
their current task.

Avoid generating assistance if:
- The value and usefulness of the assistance to the user at the current action are low.
- The information is repetitive or the user is already aware of the information when performing the task.
- The assistance is not important and is more interruptive than useful to the user.

Just output the one sentence assistance if it 's valuable for the user 's task , and nothing else. If no assistance is
needed , just return NO ASSISTANCE.

A.2 Recruitment and Study Procedure

Participants were recruited to complete a task simulating real-world object organization, such as setting a table or packing a bag, while
wearing smart glasses. Upon arrival, participants signed a consent form and received a brief overview of the study. The introduction statement
is as follows: “You are wearing smart glasses and performing tasks that involve interacting with physical objects in different scenarios. You
will also engage in conversation with other people (the experimenter) in the scenario. You will receive AI assistance throughout the session.
The focus of this study is on the timeliness of the AI assistance, whether the assistance timing felt just-in-time or interruptive.”

For each of four task scenarios, the participant was given contextual instructions before starting (e.g., you are setting up your new
office desk next to your co-worker). During the task, the experimenter introduced new information—some relevant to the participant’s
activity, others intentionally irrelevant—to simulate interruptions. The AI system could provide assistance, and the experimenter marked
any observed positive reactions for later discussion in the interview.

After each task, participants completed a short questionnaire. At the end of the session, they completed an exit survey and participated in
a semi-structured interview, where they reflected on their experiences and the system’s performance.
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All sessions were recorded using camera and screen capture tools, and all system conditions were kept blind to participants until after the
interview and debriefing.

A.3 Task Setup and Materials

Each task round was designed with a consistent structure: the participant interacted with a set of physical objects (10 distinct object types
for each task) while receiving intermittent spoken prompts from the experimenter. These prompts included both task-relevant and irrelevant
information to simulate naturalistic interruptions.

Task 1: Dining Setup. Objects: bottle, cup, bowl, fork, spoon, orange, banana, apple, potted plant, vase
Task Goal: Set up a dining table to welcome guests for dinner.
Scripted Prompts and Potential Follow-up Action:

• “I need to make a fruit salad with apples and bananas for dessert.”→ Put apples/bananas aside
• “The spoon is for the coffee in case anyone needs stirring.”→ Put spoon near cup
• “The potted plant needs more sunlight.”→Move plant toward window
• “I’m thinking of redecorating the living room...” [irrelevant]

Task 2: Office Organization. Objects: laptop, keyboard, mouse, cell phone, book, clock, cup, scissors, notepaper, marker
Task Goal: Organize a new office desk for a meeting.
Scripted Prompts:

• “I have a meeting soon and need to review notes.”→ Keep notes accessible
• “The clock is not working properly.”→ Put clock away
• “I use that blue book every day for reference.”→ Place book nearby
• “We have a charity event next month.” [irrelevant]

Task 3: Packing for a Trip. Objects: backpack, umbrella, tie, handbag, toothbrush, laptop, bottle, banana, sunglasses, medication
Task Goal: Pack a backpack for a business trip
Scripted Prompts:

• “The weather forecast says it’s not gonna rain.”→ Skip umbrella
• “Make sure you have snacks for the road.”→ Pack fruits/snacks
• “The conference is business formal.”→ Pack tie
• “I want to try a new coffee shop in the city.” [irrelevant]

Task 4: Organizing Living Room. Objects: remote, vase, sports ball, laptop, book, potted plant, candle, cup, snack, teapot
Task Goal: Style a living room space to host guests.
Scripted Prompts:

• “The guest’s child loves basketball.”→ Leave ball accessible
• “It’s daylight so we don’t need candles yet.”→ Remove candles
• “Let’s do movie night later—I can set up the TV.”→ Retrieve remote
• “The neighbors are having a party tonight.” [irrelevant]

A.4 Interview Questions

• Can you tell me about a time when the system provided assistance at a moment when you really needed it? How did that make you
feel?

• Were there any times when the system provided assistance at an undesirable timing? How did that affect your experience?
• Were there any times when the system provided information that was useful to you? How did you feel about receiving that information?
• Can you think of a time when the system provided incorrect or irrelevant information? How did you handle that situation?
• Can you describe a time when you felt fully engaged and focused during your task while using the system? What were you doing
during that time?

• Were there any times when you felt distracted or disengaged from the task? What do you think caused that feeling?
• How do you feel about your sense of control and agency?
• How much do you trust the system?


	Abstract
	1 Introduction
	2 Related Work
	2.1 Wearable Device for Task Assistance
	2.2 Memory Augmentation and Modeling
	2.3 Timing of Service and Interruptibility

	3 Design Rationale
	3.1 Design Goals

	4 ProMemAssist
	4.1 User Scenario Walkthrough
	4.2 Sensing and Information Encoding
	4.3 Working Memory Model
	4.4 Memory Properties and WM Update
	4.5 Assistance Timing Prediction
	4.6 Proactive Assistance Generation
	4.7 System Implementation

	5 Evaluation
	5.1 Participants
	5.2 Study Design
	5.3 Tasks
	5.4 Procedure
	5.5 Data Analysis

	6 Results
	6.1 ProMemAssist Delivered More Selective Assistance And Received More Positive Engagement
	6.2 ProMemAssist Better Aligned with Mental Availability and Task Flow
	6.3 ProMemAssist Led to Less Frustration and Less Perceived Interruptions
	6.4 Participant Desired Long-Term Personalization And Feedback Mechanism
	6.5 Control and Trust Depended Less on Timing and More on Assistance Quality

	7 Discussion
	7.1 Design Implications for Cognitive-Aware Assistants
	7.2 Limitations
	7.3 Future Work

	8 Conclusion
	References
	A Appendix
	A.1 LLM Prompts
	A.2 Recruitment and Study Procedure
	A.3 Task Setup and Materials
	A.4 Interview Questions


